jar_project/second_try.py
2020-06-25 14:37:52 +02:00

63 lines
1.2 KiB
Python

import matplotlib.pyplot as plt
import os
import glob
import IPython
import numpy as np
from IPython import embed
from jar_functions import parse_dataset
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat'))]
# (os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
time = []
frequency = []
amplitude = []
for dataset in datasets:
t, f, a, e= parse_dataset(dataset)
embed()
time.append(t)
frequency.append(f)
amplitude.append(a)
minimum = min(len(frequency[0]), len(frequency[1]))
f1 = frequency[0][:minimum]
f2 = frequency[1][:minimum]
frequency = f1 + f2
embed()
#frequency = np.array(frequency)
mean = np.mean(frequency, axis=0)
for i in range(len(minimum)):
mean(frequency[0][i], frequency[1][i])
for f in frequency:
print(np.mean(f))
# mean_f = np.mean(x) for x in zip(freqeuncies1, frequencies2)
embed()
#nächste Schritt: weitere Messungen einfügen und dann über alle Trials mitteln, evtl. normiert darstellen (frequency / baseline frequency?)?
#Zeitkonstante: von sec. 0 bis 63%? relative JAR
'''
plt.plot(t, f)
plt.xlabel('time [s]')
plt.ylabel('frequency [Hz]')
plt.xlim([-10,200])
plt.title('second try because first try was sold out')
plt.show()'''