25.06
This commit is contained in:
parent
8b97b8f304
commit
539cc9ed09
@ -1,24 +1,50 @@
|
||||
import os
|
||||
import os #compability with windows
|
||||
|
||||
|
||||
def parse_dataset(dataset_name):
|
||||
assert(os.path.exists(dataset_name))
|
||||
f = open(dataset_name, 'r')
|
||||
lines = f.readlines()
|
||||
f.close()
|
||||
assert(os.path.exists(dataset_name)) #see if data exists
|
||||
f = open(dataset_name, 'r') #open data we gave in
|
||||
lines = f.readlines() #read data
|
||||
f.close() #?
|
||||
|
||||
time = []
|
||||
frequency = []
|
||||
amplitude = []
|
||||
eodfs = [] #metadata lists for every loop
|
||||
deltafs = []
|
||||
stimulusfs = []
|
||||
|
||||
times = [] #data itself
|
||||
frequencies = []
|
||||
amplitudes = []
|
||||
|
||||
time = [] #temporary lists with data we put in the lists above
|
||||
ampl = []
|
||||
freq = []
|
||||
|
||||
for i in range(len(lines)):
|
||||
l = lines[i].strip()
|
||||
l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar)
|
||||
if "#" in l and "EODf" in l: #if line starts with # EODf:
|
||||
eodfs.append(float(l.split(':')[-1].strip()[:-2])) #append: line splitted by ':' the 2nd part ([-1],
|
||||
if "#" in l and "Delta f" in l: #which got striped so we sure there is no space at the end,
|
||||
deltafs.append(float(l.split(':')[-1].strip()[:-2])) #from that all expect the last two signs (Hz unit)
|
||||
if "#" in l and "StimulusFrequency" in l: #this for different metadata in different lists
|
||||
stimulusfs.append(float(l.split(':')[-1].strip()[:-2]))
|
||||
|
||||
if '#Key' in l:
|
||||
if len(time) != 0: #therefore empty in the first round
|
||||
times.append(time) #2nd loop means time != 0, so we put the times/amplitudes/frequencies to
|
||||
amplitudes.append(ampl) #the data of the first loop
|
||||
frequencies.append(freq)
|
||||
time = [] #temporary lists with the data of the 2nd loop which we put to the lists above
|
||||
ampl = []
|
||||
freq = []
|
||||
|
||||
if len(l) > 0 and l[0] is not '#':
|
||||
temp = list(map(float, l.split()))
|
||||
if len(l) > 0 and l[0] is not '#': #line not empty and doesnt start with #
|
||||
temporary = list(map(float, l.split())) #temporary list where we got 3 index splitted by spacebar, map to find them
|
||||
time.append(temporary[0]) #temporary lists with the data at that place, respectively
|
||||
freq.append(temporary[1])
|
||||
ampl.append(temporary[2])
|
||||
|
||||
time.append(temp[0])
|
||||
frequency.append(temp[1])
|
||||
amplitude.append(temp[2])
|
||||
times.append(time) #append data from one list to another
|
||||
amplitudes.append(ampl)
|
||||
frequencies.append(freq)
|
||||
|
||||
return time, frequency, amplitude
|
||||
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function
|
@ -7,26 +7,56 @@ from IPython import embed
|
||||
from jar_functions import parse_dataset
|
||||
|
||||
|
||||
dataset = os.path.join('D:\\', 'jar_project', 'JAR', '2020-06-22-ac', 'beats-eod.dat')
|
||||
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat'))]
|
||||
# (os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||
|
||||
t, f, a = parse_dataset(dataset)
|
||||
time = []
|
||||
frequency = []
|
||||
amplitude = []
|
||||
|
||||
avg_frequency = np.mean(f)
|
||||
print(avg_frequency)
|
||||
for dataset in datasets:
|
||||
t, f, a, e= parse_dataset(dataset)
|
||||
embed()
|
||||
time.append(t)
|
||||
frequency.append(f)
|
||||
amplitude.append(a)
|
||||
|
||||
|
||||
minimum = min(len(frequency[0]), len(frequency[1]))
|
||||
f1 = frequency[0][:minimum]
|
||||
f2 = frequency[1][:minimum]
|
||||
|
||||
frequency = f1 + f2
|
||||
embed()
|
||||
#frequency = np.array(frequency)
|
||||
|
||||
mean = np.mean(frequency, axis=0)
|
||||
|
||||
for i in range(len(minimum)):
|
||||
mean(frequency[0][i], frequency[1][i])
|
||||
|
||||
for f in frequency:
|
||||
print(np.mean(f))
|
||||
|
||||
# mean_f = np.mean(x) for x in zip(freqeuncies1, frequencies2)
|
||||
|
||||
|
||||
embed()
|
||||
|
||||
#nächste Schritt: weitere Messungen einfügen und dann über alle Trials mitteln, evtl. normiert darstellen (frequency / baseline frequency?)?
|
||||
#Zeitkonstante: von sec. 0 bis 63%? relative JAR
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
'''
|
||||
plt.plot(t, f)
|
||||
|
||||
plt.xlabel('time [s]')
|
||||
plt.ylabel('frequency [Hz]')
|
||||
plt.xlim([-10,200])
|
||||
plt.title('second try because first try was sold out')
|
||||
plt.show()
|
||||
plt.show()'''
|
||||
|
Loading…
Reference in New Issue
Block a user