jar_project/jar_functions.py
2020-07-24 14:30:37 +02:00

288 lines
10 KiB
Python

import os #compability with windows
from IPython import embed
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def step_response(t, a1, a2, tau1, tau2):
r_step = (a1*(1 - np.exp(-t/tau1))) + (a2*(1 - np.exp(-t/tau2)))
r_step[t<0] = 0
return r_step
def sin_response(t, f, p, A):
r_sin = A*sin(2*np.pi*t*f + p)
return r_sin
def parse_dataset(dataset_name):
assert(os.path.exists(dataset_name)) #see if data exists
f = open(dataset_name, 'r') #open data we gave in
lines = f.readlines() #read data
f.close() #?
# metadata lists for every loop
eodfs = []
deltafs = []
stimulusfs = []
duration = []
pause = []
# data itself
times = []
frequencies = []
amplitudes = []
# temporary lists with data we put in the lists above
time = []
ampl = []
freq = []
for i in range(len(lines)):
l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar)
if "#" in l and "EODf" in l: #if line starts with # EODf:
eodfs.append(float(l.split(':')[-1].strip()[:-2])) #append: line splitted by ':' the 2nd part ([-1],
if "#" in l and "Delta f" in l: #which got striped so we sure there is no space at the end,
deltafs.append(float(l.split(':')[-1].strip()[:-2])) #from that all expect the last two signs (Hz unit)
if "#" in l and "StimulusFrequency" in l: #this for different metadata in different lists
stimulusfs.append(float(l.split(':')[-1].strip()[:-2]))
if "#" in l and "Duration" in l:
duration.append(float(l.split(':')[-1].strip()[:-3]))
if "#" in l and "Pause" in l:
pause.append(float(l.split(':')[-1].strip()[:-3]))
if '#Key' in l:
if len(time) != 0: #therefore empty in the first round
times.append(np.array(time)) #2nd loop means time != 0, so we put the times/amplitudes/frequencies to
amplitudes.append(np.array(ampl)) #the data of the first loop
frequencies.append(np.array(freq))
time = [] #temporary lists to overwrite the lists with the same name we made before
ampl = [] #so they are empty again
freq = []
if len(l) > 0 and l[0] is not '#': #line not empty and doesnt start with #
temporary = list(map(float, l.split())) #temporary list where we got 3 index splitted by spacebar, map to find them
time.append(temporary[0]) #temporary lists with the data at that place, respectively
freq.append(temporary[1])
ampl.append(temporary[2])
times.append(np.array(time)) #append data from one list to another
amplitudes.append(np.array(ampl)) #these append the data from the first loop to the final lists, because we overwrite them (?)
frequencies.append(np.array(freq))
return frequencies, times, amplitudes, eodfs, deltafs, stimulusfs, duration, pause #output of the function
def parse_infodataset(dataset_name):
assert(os.path.exists(dataset_name)) #see if data exists
f = open(dataset_name, 'r') #open data we gave in
lines = f.readlines() #read data
f.close() #?
identifier = []
for i in range(len(lines)):
l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar)
if "#" in l and "Identifier" in l:
identifier.append((l.split(':')[-1].strip()))
return identifier
def mean_traces(start, stop, timespan, frequencies, time):
minimumt = min([len(time[k]) for k in range(len(time))])
tnew = np.arange(start, stop, timespan / minimumt)
frequency = np.zeros((len(frequencies), len(tnew)))
for k in range(len(frequencies)):
ft = time[k][frequencies[k] > -5]
fn = frequencies[k][frequencies[k] > -5]
frequency[k,:] = np.interp(tnew, ft, fn)
mf = np.mean(frequency, axis=0)
return mf, tnew
def mean_noise_cut(frequencies, time, n):
cutf = []
cutt = []
for k in np.arange(0, len(frequencies), n):
t = time[k]
f = np.mean(frequencies[k:k+n])
cutf.append(f)
cutt.append(t)
return cutf, cutt
def norm_function(f, t, onset_point, offset_point):
onset_end = onset_point - 10
offset_start = offset_point - 10
norm = []
for j in range(len(f)):
base = np.median(f[j][(t[j] >= onset_end) & (t[j] < onset_point)])
ground = f[j] - base
jar = np.median(ground[(t[j] >= offset_start) & (t[j] < offset_point)])
normed = ground / jar
norm.append(normed)
return norm
def base_eod(frequencies, time, onset_point):
base_eod = []
onset_end = onset_point - 10
base = np.median(frequencies[(time >= onset_end) & (time < onset_point)])
base_eod.append(base)
return base_eod
def JAR_eod(frequencies, time, offset_point):
jar_eod = []
offset_start = offset_point - 10
jar = np.median(frequencies[(time >= offset_start) & (time < offset_point)])
jar_eod.append(jar)
return jar_eod
def sort_values(values):
a = values[:2]
tau = np.array(sorted(values[2:], reverse=False))
values = np.array([a, tau])
values_flat = values.flatten()
return values_flat
def average(freq_all, time_all, start, stop, timespan, dm):
mf_all, tnew_all = mean_traces(start, stop, timespan, freq_all, time_all)
plt.plot(tnew_all, mf_all, color='b', label='average', ls='dashed')
# fit for average
sv_all, sc_all = curve_fit(step_response, tnew_all[tnew_all < dm], mf_all[tnew_all < dm],
bounds=(0.0, np.inf)) # step_values and step_cov
values_all = sort_values(sv_all)
plt.plot(tnew_all[tnew_all < 100], step_response(tnew_all, *sv_all)[tnew_all < 100], color = 'g',
label='average_fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_all))
print('average: a1, a2, tau1, tau2', values_all)
return mf_all, tnew_all, values_all
def iload_traces(basedir, repro='', before=0.0, after=0.0):
"""
returns:
info : metadata from stimuli.dat
key : key from stimuli.dat
time : an array for the time axis
data : the data of all traces of a single trial
"""
p = re.compile('([-+]?\d*\.\d+|\d+)\s*(\w+)')
reproid = 'RePro'
deltat = None
# open traces files:
sf = []
for trace in range(1, 1000000):
if path.isfile('%s/trace-%i.raw' % (basedir, trace)):
sf.append(open('%s/trace-%i.raw' % (basedir, trace), 'rb'))
else:
break
basecols = None
baserp = True
for info, key, dat in iload('%s\\stimuli.dat' % (basedir,)):
if deltat is None:
deltat, tunit = p.match(info[0]['sample interval%i' % 1]).groups()
deltat = float(deltat)
if tunit == 'ms':
deltat *= 0.001
if 'repro' in info[-1] or 'RePro' in info[-1]:
if not reproid in info[-1]:
reproid = 'repro'
if len(repro) > 0 and repro != info[-1][reproid] and \
basecols is None:
continue
baserp = (info[-1][reproid] == 'BaselineActivity')
duration_indices = [i for i, x in enumerate(key[2]) if x == "duration"]
else:
baserp = True
duration_indices = []
if dat.shape == (1, 1) and dat[0, 0] == 0:
warnings.warn("iload_traces: Encountered incomplete '-0' trial.")
yield info, key, array([])
continue
if baserp:
basecols = []
basekey = key
baseinfo = info
if len(dat) == 0:
for trace in range(len(sf)):
basecols.append(0)
for d in dat:
if not baserp and not basecols is None:
x = []
xl = []
for trace in range(len(sf)):
col = int(d[trace])
sf[trace].seek(basecols[trace] * 4)
buffer = sf[trace].read((col - basecols[trace]) * 4)
tmp = fromstring(buffer, float32)
x.append(tmp)
xl.append(len(tmp))
ml = min(xl)
for k in range(len(x)):
if len(x[k]) > ml:
warnings.warn("trunkated trace %d to %d" % (k, ml))
x[k] = x[k][:ml]
xtime = arange(0.0, len(x[0])) * deltat - before
yield baseinfo, basekey, xtime, asarray(x)
basecols = None
if len(repro) > 0 and repro != info[-1][reproid]:
break
durations = [d[i] for i in duration_indices if not isnan(d[i])]
if not baserp:
if len(durations) > 0:
duration = max(durations)
if duration < 0.001: # if the duration is less than 1ms
warnings.warn(
"iload_traces: Skipping one trial because its duration is <1ms and therefore it is probably rubbish")
continue
l = int(before / deltat)
r = int((duration + after) / deltat)
else:
continue
x = []
xl = []
for trace in range(len(sf)):
col = int(d[trace])
if baserp:
if col < 0:
col = 0
basecols.append(col)
continue
sf[trace].seek((col - l) * 4)
buffer = sf[trace].read((l + r) * 4)
tmp = fromstring(buffer, float32)
x.append(tmp)
xl.append(len(tmp))
if baserp:
break
ml = min(xl)
for k in range(len(x)):
if len(x[k]) > ml:
warnings.warn("trunkated trace %d to %d" % (k, ml))
x[k] = x[k][:ml]
time = arange(0.0, len(x[0])) * deltat - before
yield info, key, time, asarray(x)
for trace in range(len(sf)):
sf[trace].close()