24.07
This commit is contained in:
parent
3f68ac8c1a
commit
0d550e2a5d
116
jar_functions.py
116
jar_functions.py
@ -169,3 +169,119 @@ def average(freq_all, time_all, start, stop, timespan, dm):
|
||||
print('average: a1, a2, tau1, tau2', values_all)
|
||||
|
||||
return mf_all, tnew_all, values_all
|
||||
|
||||
|
||||
def iload_traces(basedir, repro='', before=0.0, after=0.0):
|
||||
"""
|
||||
returns:
|
||||
info : metadata from stimuli.dat
|
||||
key : key from stimuli.dat
|
||||
time : an array for the time axis
|
||||
data : the data of all traces of a single trial
|
||||
"""
|
||||
p = re.compile('([-+]?\d*\.\d+|\d+)\s*(\w+)')
|
||||
reproid = 'RePro'
|
||||
deltat = None
|
||||
|
||||
# open traces files:
|
||||
sf = []
|
||||
for trace in range(1, 1000000):
|
||||
if path.isfile('%s/trace-%i.raw' % (basedir, trace)):
|
||||
sf.append(open('%s/trace-%i.raw' % (basedir, trace), 'rb'))
|
||||
else:
|
||||
break
|
||||
|
||||
basecols = None
|
||||
baserp = True
|
||||
|
||||
for info, key, dat in iload('%s\\stimuli.dat' % (basedir,)):
|
||||
if deltat is None:
|
||||
deltat, tunit = p.match(info[0]['sample interval%i' % 1]).groups()
|
||||
deltat = float(deltat)
|
||||
if tunit == 'ms':
|
||||
deltat *= 0.001
|
||||
|
||||
if 'repro' in info[-1] or 'RePro' in info[-1]:
|
||||
if not reproid in info[-1]:
|
||||
reproid = 'repro'
|
||||
if len(repro) > 0 and repro != info[-1][reproid] and \
|
||||
basecols is None:
|
||||
continue
|
||||
baserp = (info[-1][reproid] == 'BaselineActivity')
|
||||
duration_indices = [i for i, x in enumerate(key[2]) if x == "duration"]
|
||||
else:
|
||||
baserp = True
|
||||
duration_indices = []
|
||||
|
||||
if dat.shape == (1, 1) and dat[0, 0] == 0:
|
||||
warnings.warn("iload_traces: Encountered incomplete '-0' trial.")
|
||||
yield info, key, array([])
|
||||
continue
|
||||
|
||||
if baserp:
|
||||
basecols = []
|
||||
basekey = key
|
||||
baseinfo = info
|
||||
if len(dat) == 0:
|
||||
for trace in range(len(sf)):
|
||||
basecols.append(0)
|
||||
for d in dat:
|
||||
if not baserp and not basecols is None:
|
||||
x = []
|
||||
xl = []
|
||||
for trace in range(len(sf)):
|
||||
col = int(d[trace])
|
||||
sf[trace].seek(basecols[trace] * 4)
|
||||
buffer = sf[trace].read((col - basecols[trace]) * 4)
|
||||
tmp = fromstring(buffer, float32)
|
||||
x.append(tmp)
|
||||
xl.append(len(tmp))
|
||||
ml = min(xl)
|
||||
for k in range(len(x)):
|
||||
if len(x[k]) > ml:
|
||||
warnings.warn("trunkated trace %d to %d" % (k, ml))
|
||||
x[k] = x[k][:ml]
|
||||
xtime = arange(0.0, len(x[0])) * deltat - before
|
||||
yield baseinfo, basekey, xtime, asarray(x)
|
||||
basecols = None
|
||||
if len(repro) > 0 and repro != info[-1][reproid]:
|
||||
break
|
||||
|
||||
durations = [d[i] for i in duration_indices if not isnan(d[i])]
|
||||
if not baserp:
|
||||
if len(durations) > 0:
|
||||
duration = max(durations)
|
||||
if duration < 0.001: # if the duration is less than 1ms
|
||||
warnings.warn(
|
||||
"iload_traces: Skipping one trial because its duration is <1ms and therefore it is probably rubbish")
|
||||
continue
|
||||
l = int(before / deltat)
|
||||
r = int((duration + after) / deltat)
|
||||
else:
|
||||
continue
|
||||
x = []
|
||||
xl = []
|
||||
for trace in range(len(sf)):
|
||||
col = int(d[trace])
|
||||
if baserp:
|
||||
if col < 0:
|
||||
col = 0
|
||||
basecols.append(col)
|
||||
continue
|
||||
sf[trace].seek((col - l) * 4)
|
||||
buffer = sf[trace].read((l + r) * 4)
|
||||
tmp = fromstring(buffer, float32)
|
||||
x.append(tmp)
|
||||
xl.append(len(tmp))
|
||||
if baserp:
|
||||
break
|
||||
ml = min(xl)
|
||||
for k in range(len(x)):
|
||||
if len(x[k]) > ml:
|
||||
warnings.warn("trunkated trace %d to %d" % (k, ml))
|
||||
x[k] = x[k][:ml]
|
||||
time = arange(0.0, len(x[0])) * deltat - before
|
||||
yield info, key, time, asarray(x)
|
||||
|
||||
for trace in range(len(sf)):
|
||||
sf[trace].close()
|
||||
|
@ -36,10 +36,13 @@ mean1 = np.mean(z, axis=1)
|
||||
|
||||
print(mean0)
|
||||
print(mean1)
|
||||
'''
|
||||
''''''
|
||||
t = [600, 650]
|
||||
|
||||
x = 1 - np.exp(t / 11)
|
||||
print(x)
|
||||
|
||||
a, b ,c,d = normalized_JAR(fre)
|
||||
a, b ,c,d = normalized_JAR(fre)
|
||||
'''
|
||||
print(np.logspace(-3, 1, 10))
|
||||
embed()
|
@ -23,9 +23,9 @@ datasets = [#'2020-06-19-aa', #-5Hz delta f, horrible fit
|
||||
#'2020-06-19-ab', #-5Hz delta f, bad fit
|
||||
#'2020-06-22-aa', #-5Hz delta f, bad fit
|
||||
#'2020-06-22-ab', #-5Hz delta f, bad fit
|
||||
'2020-06-22-ac', #-15Hz delta f, good fit
|
||||
'2020-06-22-ad', #-15Hz delta f, horrible fit
|
||||
'2020-06-22-ae', #-15Hz delta f, horrible fit
|
||||
#'2020-06-22-ac', #-15Hz delta f, good fit
|
||||
#'2020-06-22-ad', #-15Hz delta f, horrible fit
|
||||
#'2020-06-22-ae', #-15Hz delta f, horrible fit
|
||||
'2020-06-22-af' #-15Hz delta f, good fit
|
||||
]
|
||||
|
||||
@ -58,7 +58,7 @@ for idx, dataset in enumerate(datasets):
|
||||
|
||||
norm = norm_function(frequency, time, onset_point=dm - dm, offset_point=dm) # dm-dm funktioniert nur wenn onset = 0 sec
|
||||
|
||||
mf , tnew = mean_traces(start, stop, timespan, norm, time) # maybe fixed timespan/sampling rate
|
||||
mf, tnew = mean_traces(start, stop, timespan, norm, time) # maybe fixed timespan/sampling rate
|
||||
|
||||
cf, ct = mean_noise_cut(mf, tnew, n=1250)
|
||||
|
||||
|
@ -25,10 +25,11 @@ datasets = [#'2020-06-19-aa', #-5Hz delta f, horrible fit
|
||||
#'2020-06-19-ab', #-5Hz delta f, bad fit
|
||||
#'2020-06-22-aa', #-5Hz delta f, bad fit
|
||||
#'2020-06-22-ab', #-5Hz delta f, bad fit
|
||||
'2020-06-22-ac', #-15Hz delta f, good fit
|
||||
#'2020-06-22-ad', #-15Hz delta f, horrible fit
|
||||
#'2020-06-22-ae', #-15Hz delta f, horrible fit
|
||||
#'2020-06-22-af' #-15Hz delta f, good fit
|
||||
#'2020-06-22-ac', #-15Hz delta f, good fit
|
||||
#'2020-06-22-ad', #-15Hz delta f, horrible fit
|
||||
#'2020-06-22-ae', #-15Hz delta f, horrible fit
|
||||
#'2020-06-22-af', #-15Hz delta f, good fit
|
||||
'2020-07-21-ak' #sin
|
||||
]
|
||||
|
||||
#dat = glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')
|
||||
@ -51,33 +52,42 @@ for infodataset in datasets:
|
||||
for idx, dataset in enumerate(datasets):
|
||||
datapath = os.path.join(base_path, dataset)
|
||||
for info, key, time, data in dl.iload_traces(datapath, repro='Beats', before=0.0, after=0.0):
|
||||
print( info[1]['RePro'] )
|
||||
print(data.shape)
|
||||
|
||||
#plt.plot(time, data[0]) # V(t)
|
||||
#plt.show()
|
||||
nfft = 50000
|
||||
nfft1 = 5000
|
||||
spec, freqs, times = specgram(data[0], Fs=1.0/(time[1]-time[0]), detrend='mean', NFFT=nfft, noverlap=nfft//2)
|
||||
spec1, freqs1, times1 = specgram(data[0], Fs=1.0 / (time[1] - time[0]), detrend='mean', NFFT=nfft1, noverlap=nfft1 //2)
|
||||
nfft = 2**18
|
||||
spec, freqs, times = specgram(data[0], Fs=1.0/(time[1]-time[0]), detrend='mean', NFFT=nfft, noverlap=nfft*0.8)
|
||||
|
||||
dbspec = 10.0*np.log10(spec) # in dB
|
||||
dbspec1 = 10.0 * np.log10(spec1) # in dB
|
||||
print(np.min(dbspec), np.max(dbspec))
|
||||
#plt.imshow(dbspec, cmap='jet', origin='lower', extent=(times[0], times[-1], freqs[0], freqs[-1]), aspect='auto', vmin=-80, vmax=-30)
|
||||
plt.imshow(dbspec1, cmap='jet', origin='lower', extent=(times1[0], times1[-1], freqs1[0], freqs1[-1]), aspect='auto', vmin=-80, vmax=-30 )
|
||||
# interpolation, vmin, vmax
|
||||
# plot decibel as function of frequency for one time slot: wieso auflösung von frequenzen schlechter wenn nfft hoch?
|
||||
# wird frequenzauflösung besser bei höherem nfft, auch da bei nfft hoch df klein und somit hohe auflösung?
|
||||
# zeitliche auflösung schlechter mit größerem nfft
|
||||
|
||||
#for k in range(len(times)):
|
||||
#plt.plot(freqs, dbspec[:,100], label = '0')
|
||||
#plt.plot(freqs1, dbspec1[:, 100], label = '1')
|
||||
|
||||
power = dbspec[:, 10]
|
||||
|
||||
fish_p = power[(freqs > 400) & (freqs < 1000)]
|
||||
fish_f = freqs[(freqs > 400) & (freqs < 1000)]
|
||||
index = np.argmax(fish_p)
|
||||
eodf = fish_f[index]
|
||||
eodf4 = eodf * 4
|
||||
print(eodf4)
|
||||
lim0 = eodf4-20
|
||||
lim1 = eodf4+20
|
||||
|
||||
plt.imshow(dbspec, cmap='jet', origin='lower', extent=(times[0], times[-1], freqs[0], freqs[-1]), aspect='auto', vmin=-80, vmax=-30)
|
||||
|
||||
# control of plt.imshow
|
||||
df = freqs[1] - freqs[0]
|
||||
df1 = freqs1[1] - freqs1[0]
|
||||
print(df)
|
||||
print(df1)
|
||||
plt.legend()
|
||||
ix = int(np.round(eodf4/df))
|
||||
ix0 = int(np.round(lim0/df))
|
||||
ix1 = int(np.round(lim1/df))
|
||||
spec4 = dbspec[ix0:ix1, :]
|
||||
freq4 = freqs[ix0:ix1]
|
||||
jar4 = freq4[np.argmax(spec4, axis=0)]
|
||||
jar = jar4 / 4
|
||||
|
||||
plt.plot(times, jar4, '-k')
|
||||
|
||||
#plt.plot(freqs, dbspec[:,100], label = '0')
|
||||
#plt.legend()
|
||||
plt.ylim(lim0, lim1)
|
||||
plt.show()
|
||||
embed()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user