10.07
This commit is contained in:
parent
d4f534316a
commit
f2d539ae60
@ -1,6 +1,8 @@
|
|||||||
import os #compability with windows
|
import os #compability with windows
|
||||||
from IPython import embed
|
from IPython import embed
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from scipy.optimize import curve_fit
|
||||||
|
|
||||||
def step_response(t, a1, a2, tau1, tau2):
|
def step_response(t, a1, a2, tau1, tau2):
|
||||||
r_step = (a1*(1 - np.exp(-t/tau1))) + (a2*(1 - np.exp(-t/tau2)))
|
r_step = (a1*(1 - np.exp(-t/tau1))) + (a2*(1 - np.exp(-t/tau2)))
|
||||||
@ -79,25 +81,21 @@ def parse_infodataset(dataset_name):
|
|||||||
for i in range(len(lines)):
|
for i in range(len(lines)):
|
||||||
l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar)
|
l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar)
|
||||||
if "#" in l and "Identifier" in l:
|
if "#" in l and "Identifier" in l:
|
||||||
identifier.append((l.split(':')[-1].strip()[1:12]))
|
identifier.append((l.split(':')[-1].strip()))
|
||||||
return identifier
|
return identifier
|
||||||
|
|
||||||
def mean_traces(start, stop, timespan, frequencies, time):
|
def mean_traces(start, stop, timespan, frequencies, time):
|
||||||
minimumt = min([len(time[k]) for k in range(len(time))])
|
minimumt = min([len(time[k]) for k in range(len(time))])
|
||||||
# new time with wished timespan because it varies for different loops
|
|
||||||
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
tnew = np.arange(start, stop, timespan / minimumt)
|
||||||
# in case complete measuring time devided by total number of datapoints
|
|
||||||
# interpolation
|
|
||||||
#new array with frequencies of both loops as two lists put together
|
|
||||||
frequency = np.zeros((len(frequencies), len(tnew)))
|
frequency = np.zeros((len(frequencies), len(tnew)))
|
||||||
for k in range(len(frequencies)):
|
for k in range(len(frequencies)):
|
||||||
ft = time[k][frequencies[k] > -5]
|
ft = time[k][frequencies[k] > -5]
|
||||||
fn = frequencies[k][frequencies[k] > -5]
|
fn = frequencies[k][frequencies[k] > -5]
|
||||||
frequency[k,:] = np.interp(tnew, ft, fn)
|
frequency[k,:] = np.interp(tnew, ft, fn)
|
||||||
|
|
||||||
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
|
||||||
mf = np.mean(frequency, axis=0)
|
mf = np.mean(frequency, axis=0)
|
||||||
|
|
||||||
return mf, tnew
|
return mf, tnew
|
||||||
|
|
||||||
def mean_noise_cut(frequencies, time, n):
|
def mean_noise_cut(frequencies, time, n):
|
||||||
@ -110,17 +108,21 @@ def mean_noise_cut(frequencies, time, n):
|
|||||||
cutt.append(t)
|
cutt.append(t)
|
||||||
return cutf, cutt
|
return cutf, cutt
|
||||||
|
|
||||||
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
|
def norm_function(f, t, onset_point, offset_point):
|
||||||
onset_end = onset_point - 10
|
onset_end = onset_point - 10
|
||||||
offset_start = offset_point - 10
|
offset_start = offset_point - 10
|
||||||
|
|
||||||
base = np.median(cf_arr[(ct_arr >= onset_end) & (ct_arr < onset_point)])
|
norm = []
|
||||||
|
for j in range(len(f)):
|
||||||
|
base = np.median(f[j][(t[j] >= onset_end) & (t[j] < onset_point)])
|
||||||
|
|
||||||
ground = cf_arr - base
|
ground = f[j] - base
|
||||||
|
|
||||||
jar = np.median(ground[(ct_arr >= offset_start) & (ct_arr < offset_point)])
|
jar = np.median(ground[(t[j] >= offset_start) & (t[j] < offset_point)])
|
||||||
|
|
||||||
|
normed = ground / jar
|
||||||
|
norm.append(normed)
|
||||||
|
|
||||||
norm = ground / jar
|
|
||||||
return norm
|
return norm
|
||||||
|
|
||||||
def base_eod(frequencies, time, onset_point):
|
def base_eod(frequencies, time, onset_point):
|
||||||
@ -150,7 +152,20 @@ def sort_values(values):
|
|||||||
values_flat = values.flatten()
|
values_flat = values.flatten()
|
||||||
return values_flat
|
return values_flat
|
||||||
|
|
||||||
|
def average(freq_all, time_all, start, stop, timespan, dm):
|
||||||
|
mf_all, tnew_all = mean_traces(start, stop, timespan, freq_all, time_all)
|
||||||
|
|
||||||
|
plt.plot(tnew_all, mf_all, color='b', label='average', ls='dashed')
|
||||||
|
|
||||||
|
# fit for average
|
||||||
|
sv_all, sc_all = curve_fit(step_response, tnew_all[tnew_all < dm], mf_all[tnew_all < dm],
|
||||||
|
bounds=(0.0, np.inf)) # step_values and step_cov
|
||||||
|
|
||||||
|
values_all = sort_values(sv_all)
|
||||||
|
|
||||||
|
plt.plot(tnew_all[tnew_all < 100], step_response(tnew_all, *sv_all)[tnew_all < 100], color = 'g',
|
||||||
|
label='average_fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_all))
|
||||||
|
|
||||||
|
print('average: a1, a2, tau1, tau2', values_all)
|
||||||
|
|
||||||
|
return mf_all, tnew_all, values_all
|
||||||
|
@ -14,33 +14,33 @@ from jar_functions import mean_noise_cut
|
|||||||
from jar_functions import norm_function
|
from jar_functions import norm_function
|
||||||
from jar_functions import step_response
|
from jar_functions import step_response
|
||||||
from jar_functions import sort_values
|
from jar_functions import sort_values
|
||||||
|
from jar_functions import average
|
||||||
|
|
||||||
base_path = 'D:\\jar_project\\JAR'
|
base_path = 'D:\\jar_project\\JAR'
|
||||||
|
|
||||||
#nicht: -5Hz delta f, 19-aa, 22-ae, 22-ad (?)
|
#nicht: -5Hz delta f, 19-aa, 22-ae, 22-ad (?)
|
||||||
datasets = [#'2020-06-19-aa', #-5Hz delta f, horrible fit
|
datasets = [#'2020-06-19-aa', #-5Hz delta f, horrible fit
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
#'2020-06-19-ab', #-5Hz delta f, bad fit
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-aa\\beats-eod.dat')), #-5Hz delta f, bad fit
|
#'2020-06-22-aa', #-5Hz delta f, bad fit
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
#'2020-06-22-ab', #-5Hz delta f, bad fit
|
||||||
'2020-06-22-ac', #-15Hz delta f, good fit
|
'2020-06-22-ac', #-15Hz delta f, good fit
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ad\\beats-eod.dat')), #-15Hz delta f, horrible fit
|
'2020-06-22-ad', #-15Hz delta f, horrible fit
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ae\\beats-eod.dat')), #-15Hz delta f, maxfev way to high so horrible
|
'2020-06-22-ae', #-15Hz delta f, maxfev way to high so horrible
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\beats-eod.dat')) #-15Hz delta f, good fit
|
'2020-06-22-af' #-15Hz delta f, good fit
|
||||||
]
|
]
|
||||||
|
|
||||||
#dat = glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')
|
#dat = glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')
|
||||||
#infodat = glob.glob('D:\\jar_project\\JAR\\2020*\\info.dat')
|
#infodat = glob.glob('D:\\jar_project\\JAR\\2020*\\info.dat')
|
||||||
|
|
||||||
infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat')),
|
|
||||||
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\info.dat'))]
|
|
||||||
|
|
||||||
time_all = []
|
time_all = []
|
||||||
freq_all = []
|
freq_all = []
|
||||||
|
|
||||||
ID = []
|
ID = []
|
||||||
col = ['darkgrey', 'lightgrey']
|
col = ['dimgrey', 'grey', 'darkgrey', 'silver', 'lightgrey', 'gainsboro', 'whitesmoke']
|
||||||
|
labels = zip(ID, datasets)
|
||||||
|
|
||||||
for infodataset in infodatasets:
|
for infodataset in datasets:
|
||||||
|
infodataset = os.path.join(base_path, infodataset, 'info.dat')
|
||||||
i = parse_infodataset(infodataset)
|
i = parse_infodataset(infodataset)
|
||||||
identifier = i[0]
|
identifier = i[0]
|
||||||
ID.append(identifier)
|
ID.append(identifier)
|
||||||
@ -55,54 +55,36 @@ for idx, dataset in enumerate(datasets):
|
|||||||
timespan = dm + pm
|
timespan = dm + pm
|
||||||
start = np.mean([t[0] for t in time])
|
start = np.mean([t[0] for t in time])
|
||||||
stop = np.mean([t[-1] for t in time])
|
stop = np.mean([t[-1] for t in time])
|
||||||
mf , tnew = mean_traces(start, stop, timespan, frequency, time) # maybe fixed timespan/sampling rate
|
|
||||||
|
|
||||||
#for i in range(len(mf)):
|
norm = norm_function(frequency, time, onset_point=dm - dm, offset_point=dm) # dm-dm funktioniert nur wenn onset = 0 sec
|
||||||
|
|
||||||
|
mf , tnew = mean_traces(start, stop, timespan, norm, time) # maybe fixed timespan/sampling rate
|
||||||
|
|
||||||
cf, ct = mean_noise_cut(mf, tnew, n=1250)
|
cf, ct = mean_noise_cut(mf, tnew, n=1250)
|
||||||
|
|
||||||
cf_arr = np.array(cf)
|
cf_arr = np.array(cf)
|
||||||
ct_arr = np.array(ct)
|
ct_arr = np.array(ct)
|
||||||
|
|
||||||
norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec
|
freq_all.append(cf_arr)
|
||||||
|
|
||||||
freq_all.append(norm)
|
|
||||||
time_all.append(ct_arr)
|
time_all.append(ct_arr)
|
||||||
|
|
||||||
#plt.plot(ct_arr, norm) #, color = col[idx], label='fish=%s' % ID[idx])
|
plt.plot(ct_arr, cf_arr, color = col[idx], label='fish=%s' % datasets[idx])
|
||||||
|
|
||||||
# fit function
|
sv, sc = curve_fit(step_response, ct_arr[ct_arr < dm], cf_arr[ct_arr < dm], [1.0, 1.0, 5.0, 50.0], bounds=(0.0, np.inf)) # step_values and step_cov
|
||||||
ft = ct_arr[ct_arr < dm]
|
|
||||||
fn = norm[ct_arr < dm]
|
|
||||||
ft = ft[fn > -5]
|
|
||||||
fn = fn[fn > -5]
|
|
||||||
sv, sc = curve_fit(step_response, ft, fn, [1.0, 1.0, 5.0, 50.0], bounds=(0.0, np.inf)) #step_values and step_cov
|
|
||||||
|
|
||||||
# sorted a and tau
|
# sorted a and tau
|
||||||
values = sort_values(sv)
|
values = sort_values(sv)
|
||||||
|
|
||||||
'''
|
|
||||||
# fit for each trace
|
# fit for each trace
|
||||||
plt.plot(ct_arr[ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], color='orange',
|
plt.plot(ct_arr[ct_arr < dm], step_response(ct_arr[ct_arr < dm], *sv), label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values))
|
||||||
label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values))
|
#plt.plot(ft, step_response(ft, *sv), color='orange', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values))
|
||||||
'''
|
|
||||||
|
|
||||||
print('fish: a1, a2, tau1, tau2', values)
|
print('fish: a1, a2, tau1, tau2', values)
|
||||||
|
|
||||||
# average over all fish
|
|
||||||
mf_all , tnew_all = mean_traces(start, stop, timespan, freq_all, time_all)
|
|
||||||
|
|
||||||
plt.plot(tnew_all, mf_all, color = 'b', label = 'average', ls = 'dashed')
|
|
||||||
|
|
||||||
# fit for average
|
|
||||||
sv_all, sc_all = curve_fit(step_response, tnew_all[tnew_all < dm], mf_all[tnew_all < dm], bounds=(0.0, np.inf)) #step_values and step_cov
|
|
||||||
|
|
||||||
values_all = sort_values(sv_all)
|
|
||||||
|
|
||||||
plt.plot(tnew_all[tnew_all < 100], step_response(tnew_all, *sv_all)[tnew_all < 100], color='orange',
|
|
||||||
label='average_fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_all))
|
|
||||||
|
|
||||||
print('average: a1, a2, tau1, tau2', values_all)
|
'''# average over all fish
|
||||||
|
mf_all, tnew_all, values_all = average(freq_all, time_all, start, stop, timespan, dm)
|
||||||
|
'''
|
||||||
|
|
||||||
const_line = plt.axhline(y = 0.632)
|
const_line = plt.axhline(y = 0.632)
|
||||||
stimulus_duration = plt.hlines(y = -0.25, xmin = 0, xmax = 100, color = 'r', label = 'stimulus_duration')
|
stimulus_duration = plt.hlines(y = -0.25, xmin = 0, xmax = 100, color = 'r', label = 'stimulus_duration')
|
||||||
|
Loading…
Reference in New Issue
Block a user