29.06
This commit is contained in:
parent
25b2f43e71
commit
c3c92fd42d
@ -52,14 +52,21 @@ def parse_dataset(dataset_name):
|
||||
times.append(time) #append data from one list to another
|
||||
amplitudes.append(ampl) #these append the data from the first loop to the final lists, because we overwrite them (?)
|
||||
frequencies.append(freq)
|
||||
embed()
|
||||
|
||||
minimum = min(len(frequency[0]), len(frequency[1]))
|
||||
f1 = frequencies[0][:minimum]
|
||||
f2 = frequencies[1][:minimum]
|
||||
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function
|
||||
|
||||
#print(len(time))
|
||||
print(len(times))
|
||||
embed()
|
||||
|
||||
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function
|
||||
|
||||
def noise_reduce(dataset_name):
|
||||
assert (os.path.exists(dataset_name)) # see if data exists
|
||||
f = open(dataset_name, 'r') # open data we gave in
|
||||
lines = f.readlines() # read data
|
||||
f.close()
|
||||
|
||||
n = 10
|
||||
cutf = []
|
||||
for i in np.arange(0, len(dataset_name), n): #dataset_name sollte Frequenzen sein?
|
||||
mean = np.mean(dataset_name[i:i+n]) #sollte nach i+n weitergehen?
|
||||
cutf.append(mean)
|
||||
|
||||
return cutf
|
11
scratch.py
11
scratch.py
@ -1,4 +1,6 @@
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
|
||||
"""
|
||||
#second_try scratch
|
||||
minimum = min(len(frequency[0]), len(frequency[1]))
|
||||
@ -21,4 +23,11 @@ g = [1, 2]
|
||||
|
||||
h = [3, 4]
|
||||
|
||||
z = np.array([1, 2], [3, 4], dtype=object)
|
||||
z = np.array([[g], [h]])
|
||||
|
||||
mean0 = np.mean(z, axis=0)
|
||||
mean1 = np.mean(z, axis=1)
|
||||
|
||||
print(mean0)
|
||||
print(mean1)
|
||||
|
||||
|
@ -5,9 +5,10 @@ import IPython
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
from jar_functions import parse_dataset
|
||||
from jar_functions import noise_reduce
|
||||
|
||||
|
||||
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat'))]
|
||||
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||
# (os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||
|
||||
eodf = []
|
||||
@ -15,31 +16,75 @@ deltaf = []
|
||||
stimulusf = []
|
||||
|
||||
time = []
|
||||
frequency = []
|
||||
frequency_mean= []
|
||||
amplitude = []
|
||||
|
||||
start = -10
|
||||
stop = 200
|
||||
timespan = 210
|
||||
|
||||
for dataset in datasets:
|
||||
#input of the function
|
||||
t, f, a, e, d, s= parse_dataset(dataset)
|
||||
|
||||
time.append(t)
|
||||
frequency.append(f)
|
||||
amplitude.append(a)
|
||||
'times'
|
||||
# same for time in both loops
|
||||
minimumt = min(len(t[0]), len(t[1]))
|
||||
t0 = t[0][:minimumt]
|
||||
t1 = t[1][:minimumt]
|
||||
|
||||
# new time with wished timespan because it varies for different loops
|
||||
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
||||
# in case complete measuring time devided by total number of datapoints
|
||||
|
||||
'frequencies'
|
||||
# minimum datapoint lenght of both loops of frequencies
|
||||
minimumf = min(len(f[0]), len(f[1]))
|
||||
# new frequencies to minimum for both loops
|
||||
f0 = f[0][:minimumf]
|
||||
# interpolation
|
||||
f0new = np.interp(tnew, t0, f0)
|
||||
|
||||
f1 = f[1][:minimumf]
|
||||
# interpolation
|
||||
f1new = np.interp(tnew, t1, f1)
|
||||
|
||||
#new array with frequencies of both loops as two lists put together as an array
|
||||
frequency = np.array([[f0new], [f1new]])
|
||||
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
||||
mf = np.mean(frequency, axis=0).T #.T as transition (1,0) -> (0,1)
|
||||
|
||||
|
||||
#other variant for transition by reshaping in needed dimension
|
||||
mfreshape = np.reshape(mf, (minimumf, 1)) #as ploting is using the first dimension, number of datapoints has to be in the first
|
||||
treshape = np.reshape(tnew, (minimumf, 1))
|
||||
|
||||
|
||||
|
||||
#appending data
|
||||
eodf.append(e)
|
||||
deltaf.append(d)
|
||||
stimulusf.append(s)
|
||||
amplitude.append(a)
|
||||
|
||||
mean = np.mean(frequency, axis=0)
|
||||
frequency_mean.append(mfreshape)
|
||||
time.append(treshape)
|
||||
|
||||
#embed()
|
||||
cutfreq = noise_reduce(mfreshape)
|
||||
embed()
|
||||
|
||||
#evtl. normiert darstellen (frequency / baseline frequency?)?
|
||||
#Zeitkonstante: von sec. 0 bis 63%? relative JAR
|
||||
|
||||
plt.plot(time, frequency)
|
||||
|
||||
#plotting
|
||||
'''why does append put in a 3rd dimension? plt.plot(time, frequency_mean) '''
|
||||
|
||||
plt.plot(treshape, mfreshape)
|
||||
plt.xlim([-10,200])
|
||||
#plt.ylim([400, 1000])
|
||||
plt.xlabel('time [s]')
|
||||
plt.ylabel('frequency [Hz]')
|
||||
plt.xlim([-10,200])
|
||||
plt.title('second try because first try was sold out')
|
||||
plt.show()
|
||||
|
||||
|
||||
#evtl. normiert darstellen (frequency / baseline frequency?)?
|
||||
#Zeitkonstante: von sec. 0 bis 63%? relative JAR
|
||||
|
Loading…
Reference in New Issue
Block a user