28.06
This commit is contained in:
parent
09b17a04eb
commit
25b2f43e71
@ -1,5 +1,5 @@
|
||||
import os #compability with windows
|
||||
|
||||
from IPython import embed
|
||||
|
||||
def parse_dataset(dataset_name):
|
||||
assert(os.path.exists(dataset_name)) #see if data exists
|
||||
@ -7,15 +7,18 @@ def parse_dataset(dataset_name):
|
||||
lines = f.readlines() #read data
|
||||
f.close() #?
|
||||
|
||||
eodfs = [] #metadata lists for every loop
|
||||
# metadata lists for every loop
|
||||
eodfs = []
|
||||
deltafs = []
|
||||
stimulusfs = []
|
||||
|
||||
times = [] #data itself
|
||||
# data itself
|
||||
times = []
|
||||
frequencies = []
|
||||
amplitudes = []
|
||||
|
||||
time = [] #temporary lists with data we put in the lists above
|
||||
# temporary lists with data we put in the lists above
|
||||
time = []
|
||||
ampl = []
|
||||
freq = []
|
||||
|
||||
@ -29,13 +32,16 @@ def parse_dataset(dataset_name):
|
||||
stimulusfs.append(float(l.split(':')[-1].strip()[:-2]))
|
||||
|
||||
if '#Key' in l:
|
||||
#print('KEY')
|
||||
if len(time) != 0: #therefore empty in the first round
|
||||
times.append(time) #2nd loop means time != 0, so we put the times/amplitudes/frequencies to
|
||||
amplitudes.append(ampl) #the data of the first loop
|
||||
frequencies.append(freq)
|
||||
time = [] #temporary lists with the data of the 2nd loop which we put to the lists above
|
||||
ampl = []
|
||||
|
||||
time = [] #temporary lists to overwrite the lists with the same name we made before
|
||||
ampl = [] #so they are empty again
|
||||
freq = []
|
||||
print(len(times))
|
||||
|
||||
if len(l) > 0 and l[0] is not '#': #line not empty and doesnt start with #
|
||||
temporary = list(map(float, l.split())) #temporary list where we got 3 index splitted by spacebar, map to find them
|
||||
@ -44,7 +50,16 @@ def parse_dataset(dataset_name):
|
||||
ampl.append(temporary[2])
|
||||
|
||||
times.append(time) #append data from one list to another
|
||||
amplitudes.append(ampl)
|
||||
amplitudes.append(ampl) #these append the data from the first loop to the final lists, because we overwrite them (?)
|
||||
frequencies.append(freq)
|
||||
embed()
|
||||
|
||||
minimum = min(len(frequency[0]), len(frequency[1]))
|
||||
f1 = frequencies[0][:minimum]
|
||||
f2 = frequencies[1][:minimum]
|
||||
|
||||
#print(len(time))
|
||||
print(len(times))
|
||||
embed()
|
||||
|
||||
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function
|
11
scratch.py
11
scratch.py
@ -1,4 +1,5 @@
|
||||
|
||||
import numpy as np
|
||||
"""
|
||||
#second_try scratch
|
||||
minimum = min(len(frequency[0]), len(frequency[1]))
|
||||
f1 = frequency[0][:minimum]
|
||||
@ -14,4 +15,10 @@ for i in range(len(minimum)):
|
||||
for f in frequency:
|
||||
print(np.mean(f))
|
||||
|
||||
# mean_f = np.mean(x) for x in zip(freqeuncies1, frequencies2)
|
||||
# mean_f = np.mean(x) for x in zip(freqeuncies1, frequencies2)
|
||||
"""
|
||||
g = [1, 2]
|
||||
|
||||
h = [3, 4]
|
||||
|
||||
z = np.array([1, 2], [3, 4], dtype=object)
|
@ -29,22 +29,17 @@ for dataset in datasets:
|
||||
deltaf.append(d)
|
||||
stimulusf.append(s)
|
||||
|
||||
embed()
|
||||
|
||||
#nächste Schritt: weitere Messungen einfügen und dann über alle Trials mitteln, evtl. normiert darstellen (frequency / baseline frequency?)?
|
||||
#Zeitkonstante: von sec. 0 bis 63%? relative JAR
|
||||
|
||||
|
||||
|
||||
|
||||
mean = np.mean(frequency, axis=0)
|
||||
|
||||
#embed()
|
||||
|
||||
#evtl. normiert darstellen (frequency / baseline frequency?)?
|
||||
#Zeitkonstante: von sec. 0 bis 63%? relative JAR
|
||||
|
||||
'''
|
||||
plt.plot(t, f)
|
||||
plt.plot(time, frequency)
|
||||
|
||||
plt.xlabel('time [s]')
|
||||
plt.ylabel('frequency [Hz]')
|
||||
plt.xlim([-10,200])
|
||||
plt.title('second try because first try was sold out')
|
||||
plt.show()'''
|
||||
plt.show()
|
||||
|
Loading…
Reference in New Issue
Block a user