This commit is contained in:
xaver 2020-06-29 16:38:20 +02:00
parent 25b2f43e71
commit c3c92fd42d
3 changed files with 82 additions and 21 deletions

View File

@ -52,14 +52,21 @@ def parse_dataset(dataset_name):
times.append(time) #append data from one list to another
amplitudes.append(ampl) #these append the data from the first loop to the final lists, because we overwrite them (?)
frequencies.append(freq)
embed()
minimum = min(len(frequency[0]), len(frequency[1]))
f1 = frequencies[0][:minimum]
f2 = frequencies[1][:minimum]
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function
#print(len(time))
print(len(times))
embed()
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function
def noise_reduce(dataset_name):
assert (os.path.exists(dataset_name)) # see if data exists
f = open(dataset_name, 'r') # open data we gave in
lines = f.readlines() # read data
f.close()
n = 10
cutf = []
for i in np.arange(0, len(dataset_name), n): #dataset_name sollte Frequenzen sein?
mean = np.mean(dataset_name[i:i+n]) #sollte nach i+n weitergehen?
cutf.append(mean)
return cutf

View File

@ -1,4 +1,6 @@
import numpy as np
from IPython import embed
"""
#second_try scratch
minimum = min(len(frequency[0]), len(frequency[1]))
@ -21,4 +23,11 @@ g = [1, 2]
h = [3, 4]
z = np.array([1, 2], [3, 4], dtype=object)
z = np.array([[g], [h]])
mean0 = np.mean(z, axis=0)
mean1 = np.mean(z, axis=1)
print(mean0)
print(mean1)

View File

@ -5,9 +5,10 @@ import IPython
import numpy as np
from IPython import embed
from jar_functions import parse_dataset
from jar_functions import noise_reduce
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat'))]
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
# (os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
eodf = []
@ -15,31 +16,75 @@ deltaf = []
stimulusf = []
time = []
frequency = []
frequency_mean= []
amplitude = []
start = -10
stop = 200
timespan = 210
for dataset in datasets:
#input of the function
t, f, a, e, d, s= parse_dataset(dataset)
time.append(t)
frequency.append(f)
amplitude.append(a)
'times'
# same for time in both loops
minimumt = min(len(t[0]), len(t[1]))
t0 = t[0][:minimumt]
t1 = t[1][:minimumt]
# new time with wished timespan because it varies for different loops
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
# in case complete measuring time devided by total number of datapoints
'frequencies'
# minimum datapoint lenght of both loops of frequencies
minimumf = min(len(f[0]), len(f[1]))
# new frequencies to minimum for both loops
f0 = f[0][:minimumf]
# interpolation
f0new = np.interp(tnew, t0, f0)
f1 = f[1][:minimumf]
# interpolation
f1new = np.interp(tnew, t1, f1)
#new array with frequencies of both loops as two lists put together as an array
frequency = np.array([[f0new], [f1new]])
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
mf = np.mean(frequency, axis=0).T #.T as transition (1,0) -> (0,1)
#other variant for transition by reshaping in needed dimension
mfreshape = np.reshape(mf, (minimumf, 1)) #as ploting is using the first dimension, number of datapoints has to be in the first
treshape = np.reshape(tnew, (minimumf, 1))
#appending data
eodf.append(e)
deltaf.append(d)
stimulusf.append(s)
amplitude.append(a)
mean = np.mean(frequency, axis=0)
frequency_mean.append(mfreshape)
time.append(treshape)
#embed()
cutfreq = noise_reduce(mfreshape)
embed()
#evtl. normiert darstellen (frequency / baseline frequency?)?
#Zeitkonstante: von sec. 0 bis 63%? relative JAR
plt.plot(time, frequency)
#plotting
'''why does append put in a 3rd dimension? plt.plot(time, frequency_mean) '''
plt.plot(treshape, mfreshape)
plt.xlim([-10,200])
#plt.ylim([400, 1000])
plt.xlabel('time [s]')
plt.ylabel('frequency [Hz]')
plt.xlim([-10,200])
plt.title('second try because first try was sold out')
plt.show()
#evtl. normiert darstellen (frequency / baseline frequency?)?
#Zeitkonstante: von sec. 0 bis 63%? relative JAR