03.07
This commit is contained in:
parent
b7bc739f37
commit
9a6d29073e
@ -58,11 +58,10 @@ def parse_dataset(dataset_name):
|
|||||||
def mean_noise_cut(frequencies, time, n):
|
def mean_noise_cut(frequencies, time, n):
|
||||||
cutf = []
|
cutf = []
|
||||||
cutt = []
|
cutt = []
|
||||||
for k in np.arange(0, len(time), n):
|
for k in np.arange(0, len(frequencies), n):
|
||||||
f = frequencies[k:k+n]
|
|
||||||
t = time[k]
|
t = time[k]
|
||||||
mean = np.mean(f)
|
f = np.mean(frequencies[k:k+n])
|
||||||
cutf.append(mean)
|
cutf.append(f)
|
||||||
cutt.append(t)
|
cutt.append(t)
|
||||||
return cutf, cutt
|
return cutf, cutt
|
||||||
|
|
||||||
@ -74,19 +73,21 @@ def step_response(t, a1, a2, tau1, tau2):
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
def normalized_JAR(frequencies, time, onset=0, offset=100):
|
def base_eod(frequencies, time, onset_point):
|
||||||
|
|
||||||
onset_point = onset - 10
|
|
||||||
offset_point = offset - 10
|
|
||||||
embed()
|
|
||||||
base_eod = []
|
base_eod = []
|
||||||
step_eod = []
|
|
||||||
|
|
||||||
np.mean(f[(time >= onset_point) & time < onset])
|
onset_end = onset_point - 10
|
||||||
for i in range(len(frequencies)):
|
|
||||||
if time < onset and time > onset_point:
|
base = np.mean(frequencies[(time >= onset_end) & (time < onset_point)])
|
||||||
|
base_eod.append(base)
|
||||||
|
return base_eod
|
||||||
|
|
||||||
|
def JAR_eod(frequencies, time, offset_point):
|
||||||
|
jar_eod = []
|
||||||
|
|
||||||
|
offset_start = offset_point - 10
|
||||||
|
|
||||||
base_eod.append(frequencies[i])
|
jar = np.mean(frequencies[(time >= offset_start) & (time < offset_point)])
|
||||||
|
jar_eod.append(jar)
|
||||||
|
|
||||||
if time[i] < offset and time[i] > offset_range:
|
return jar_eod
|
||||||
step_eod.append(frequencies[i])
|
|
@ -7,6 +7,8 @@ from IPython import embed
|
|||||||
from jar_functions import parse_dataset
|
from jar_functions import parse_dataset
|
||||||
from jar_functions import mean_noise_cut
|
from jar_functions import mean_noise_cut
|
||||||
from jar_functions import step_response
|
from jar_functions import step_response
|
||||||
|
from jar_functions import JAR_eod
|
||||||
|
from jar_functions import base_eod
|
||||||
|
|
||||||
|
|
||||||
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||||
@ -49,40 +51,43 @@ for dataset in datasets:
|
|||||||
frequency_mean.append(mf)
|
frequency_mean.append(mf)
|
||||||
time.append(tnew)
|
time.append(tnew)
|
||||||
|
|
||||||
|
"""
|
||||||
|
for a in [0, 1, 2]:
|
||||||
|
for b in [0, 1, 2]:
|
||||||
|
r_step = step_response(t = ct_arr, a1 = a, a2 = b, tau1 = 30, tau2 = 60)
|
||||||
|
"""
|
||||||
|
|
||||||
for i in range(len(frequency_mean)):
|
for i in range(len(frequency_mean)):
|
||||||
for n in [10, 50, 100, 1000, 10000, 20000, 30000]:
|
for n in [100, 500, 1000]:
|
||||||
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=n)
|
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=n)
|
||||||
#plt.plot(ct, cf, label='n=%d' % n)
|
|
||||||
|
|
||||||
ct_array = np.array(ct) +10
|
|
||||||
|
|
||||||
r_step = step_response(t=ct_array, a1=0.58, a2=0, tau1=100, tau2=100)
|
|
||||||
|
|
||||||
#plt.plot(r_step)
|
ct_arr = np.array(ct)
|
||||||
|
cf_arr = np.array(cf)
|
||||||
|
|
||||||
|
base = base_eod(cf_arr, ct_arr, onset_point = 0)
|
||||||
|
ground = cf_arr - base
|
||||||
|
jar = JAR_eod(ground, ct_arr, offset_point = 100)
|
||||||
|
norm = ground / jar
|
||||||
|
|
||||||
for a in [0, 1, 2]:
|
plt.plot(ct_arr, norm, label='n=%d' % n)
|
||||||
for b in [0, 1, 2]:
|
|
||||||
r_step = step_response(t = ct_array, a1 = a, a2 = b, tau1 = 30, tau2 = 60)
|
|
||||||
|
|
||||||
|
|
||||||
plt.plot(time[0], frequency_mean[0])
|
|
||||||
plt.show()
|
|
||||||
embed()
|
|
||||||
|
|
||||||
|
for n in [1480]:
|
||||||
|
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=n)
|
||||||
|
ct_arr = np.array(ct)
|
||||||
|
cf_arr = np.array(cf)
|
||||||
|
r_step = step_response(t=ct_arr + 10, a1=0.55, a2=0.89, tau1=11.2, tau2= 280)
|
||||||
|
plt.plot(r_step, label='fit: n=%d' % n)
|
||||||
|
|
||||||
'plotting'
|
'plotting'
|
||||||
plt.xlim([-10,200])
|
plt.xlim([-10,220])
|
||||||
#plt.ylim([400, 1000])
|
#plt.ylim([400, 1000])
|
||||||
plt.xlabel('time [s]')
|
plt.xlabel('time [s]')
|
||||||
#plt.ylabel('rel. JAR magnitude')
|
plt.ylabel('rel. JAR magnitude')
|
||||||
#plt.title('fit_function(a1=0)')
|
#plt.title('fit_function(a1=0)')
|
||||||
#plt.savefig('fit_function(a1=0)')
|
#plt.savefig('fit_function(a1=0)')
|
||||||
plt.legend()
|
plt.legend()
|
||||||
plt.show()
|
plt.show()
|
||||||
|
embed()
|
||||||
|
# Zeitkonstante: von sec. 0 bis 63%? relative JAR
|
||||||
|
|
||||||
# normiert darstellen (frequency / mean von baseline frequency?)?
|
|
||||||
# Zeitkonstante: von sec. 0 bis 63%? relative JAR
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user