01.07
This commit is contained in:
parent
d4ed1e0040
commit
b7bc739f37
@ -55,25 +55,6 @@ def parse_dataset(dataset_name):
|
||||
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function
|
||||
|
||||
|
||||
|
||||
'''
|
||||
assert (os.path.exists(dataset_name)) # see if data exists
|
||||
f = open(dataset_name, 'r') # open data we gave in
|
||||
lines = f.readlines() # read data
|
||||
f.close()
|
||||
#len of frequencies is 10 time shorter than before, so worked?
|
||||
#put in frequencies instead of dataset?
|
||||
#2nd loop cut frequencies by this function?
|
||||
cutf = []
|
||||
frequencies = []
|
||||
for i in range(len(lines)):
|
||||
l = lines[i].strip()
|
||||
|
||||
if len(l) > 0 and l[0] is not '#':
|
||||
temporary = list(map(float, l.split()))
|
||||
frequencies.append(temporary[1])
|
||||
'''
|
||||
|
||||
def mean_noise_cut(frequencies, time, n):
|
||||
cutf = []
|
||||
cutt = []
|
||||
@ -83,4 +64,29 @@ def mean_noise_cut(frequencies, time, n):
|
||||
mean = np.mean(f)
|
||||
cutf.append(mean)
|
||||
cutt.append(t)
|
||||
return cutf, cutt
|
||||
return cutf, cutt
|
||||
|
||||
def step_response(t, a1, a2, tau1, tau2):
|
||||
r_step = a1*(1 - np.exp(-t/tau1)) + a2*(1- np.exp(-t/tau2))
|
||||
return r_step
|
||||
# plotten mit manual values for a1, ...
|
||||
# auch mal a1 oder a2 auf Null setzen.
|
||||
|
||||
|
||||
|
||||
def normalized_JAR(frequencies, time, onset=0, offset=100):
|
||||
|
||||
onset_point = onset - 10
|
||||
offset_point = offset - 10
|
||||
embed()
|
||||
base_eod = []
|
||||
step_eod = []
|
||||
|
||||
np.mean(f[(time >= onset_point) & time < onset])
|
||||
for i in range(len(frequencies)):
|
||||
if time < onset and time > onset_point:
|
||||
|
||||
base_eod.append(frequencies[i])
|
||||
|
||||
if time[i] < offset and time[i] > offset_range:
|
||||
step_eod.append(frequencies[i])
|
||||
|
@ -37,6 +37,9 @@ mean1 = np.mean(z, axis=1)
|
||||
print(mean0)
|
||||
print(mean1)
|
||||
'''
|
||||
for dataset in datasets:
|
||||
cf = noise_reduce(dataset, 10)
|
||||
embed()
|
||||
t = [600, 650]
|
||||
|
||||
x = 1 - np.exp(t / 11)
|
||||
print(x)
|
||||
|
||||
a, b ,c,d = normalized_JAR(fre)
|
@ -6,10 +6,10 @@ import numpy as np
|
||||
from IPython import embed
|
||||
from jar_functions import parse_dataset
|
||||
from jar_functions import mean_noise_cut
|
||||
from jar_functions import step_response
|
||||
|
||||
|
||||
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||
# (os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||
|
||||
eodf = []
|
||||
deltaf = []
|
||||
@ -27,76 +27,62 @@ for dataset in datasets:
|
||||
#input of the function
|
||||
t, f, a, e, d, s= parse_dataset(dataset)
|
||||
|
||||
'times'
|
||||
# same for time in both loops
|
||||
minimumt = min(len(t[0]), len(t[1]))
|
||||
t0 = t[0][:minimumt]
|
||||
t1 = t[1][:minimumt]
|
||||
|
||||
# new time with wished timespan because it varies for different loops
|
||||
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
||||
# in case complete measuring time devided by total number of datapoints
|
||||
|
||||
'frequencies'
|
||||
# minimum datapoint lenght of both loops of frequencies
|
||||
minimumf = min(len(f[0]), len(f[1]))
|
||||
# new frequencies to minimum for both loops
|
||||
f0 = f[0][:minimumf]
|
||||
# interpolation
|
||||
f0new = np.interp(tnew, t0, f0)
|
||||
|
||||
f1 = f[1] #[:minimumf]
|
||||
# in case complete measuring time devided by total number of datapoints
|
||||
# interpolation
|
||||
f1new = np.interp(tnew, t1, f1)
|
||||
f0 = np.interp(tnew, t[0], f[0])
|
||||
f1 = np.interp(tnew, t[1], f[1])
|
||||
|
||||
#new array with frequencies of both loops as two lists put together
|
||||
frequency = np.array([f0new, f1new])
|
||||
frequency = np.array([f0, f1])
|
||||
|
||||
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
||||
mf = np.mean(frequency, axis=0) #.T as transition (1,0) -> (0,1)
|
||||
mf = np.mean(frequency, axis=0)
|
||||
|
||||
#appending data
|
||||
eodf.append(e)
|
||||
deltaf.append(d)
|
||||
stimulusf.append(s)
|
||||
amplitude.append(a)
|
||||
|
||||
frequency_mean.append(mf)
|
||||
time.append(tnew)
|
||||
|
||||
for i in range(len(frequency_mean)):
|
||||
for n in [10, 50, 100, 1000, 10000, 20000, 30000]:
|
||||
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=n)
|
||||
plt.plot(ct, cf, label='n=%d' % n)
|
||||
#plt.plot(ct, cf, label='n=%d' % n)
|
||||
|
||||
ct_array = np.array(ct) +10
|
||||
|
||||
r_step = step_response(t=ct_array, a1=0.58, a2=0, tau1=100, tau2=100)
|
||||
|
||||
#plt.plot(r_step)
|
||||
|
||||
|
||||
for a in [0, 1, 2]:
|
||||
for b in [0, 1, 2]:
|
||||
r_step = step_response(t = ct_array, a1 = a, a2 = b, tau1 = 30, tau2 = 60)
|
||||
|
||||
|
||||
plt.plot(time[0], frequency_mean[0])
|
||||
plt.show()
|
||||
embed()
|
||||
|
||||
|
||||
'plotting'
|
||||
plt.xlim([-10,200])
|
||||
#plt.ylim([400, 1000])
|
||||
plt.xlabel('time [s]')
|
||||
plt.ylabel('frequency [Hz]')
|
||||
#plt.title('noise_cut_n=100')
|
||||
#plt.savefig('noise_cut_n=100')
|
||||
#plt.ylabel('rel. JAR magnitude')
|
||||
#plt.title('fit_function(a1=0)')
|
||||
#plt.savefig('fit_function(a1=0)')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
|
||||
def double_exp(t, a1, a2, tau1, tau2):
|
||||
return a1*np.exp(-t/tau1)
|
||||
# plotten mit manual values for a1, ...
|
||||
# auch mal a1 oder a2 auf Null setzen.
|
||||
|
||||
#evtl. normiert darstellen (frequency / baseline frequency?)?
|
||||
#Zeitkonstante: von sec. 0 bis 63%? relative JAR
|
||||
'''
|
||||
'controll of interpolation'
|
||||
fig=plt.figure()
|
||||
ax=fig.add_subplot(1,1,1)
|
||||
ax.plot(tnew, mf, c = 'r', marker = 'o', ls = 'solid', label = 'new')
|
||||
ax.plot(t0, f0, c = 'b', marker = '+', ls = '-', label = 'loop_0')
|
||||
ax.plot(t1, f1, c= 'g', marker = '+', ls = '-', label = 'loop_1')
|
||||
plt.legend(loc = 'best')
|
||||
#plt.plot(tnew, mf, marker = 'r-o', label = new, t0, f0, marker = 'b-+', label = loop_0, t1, f1, marker = 'g-+', label = loop_1)
|
||||
plt.show()
|
||||
'''
|
||||
|
||||
# normiert darstellen (frequency / mean von baseline frequency?)?
|
||||
# Zeitkonstante: von sec. 0 bis 63%? relative JAR
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user