This commit is contained in:
xaver 2020-07-01 16:40:47 +02:00
parent d4ed1e0040
commit b7bc739f37
3 changed files with 61 additions and 66 deletions

View File

@ -55,25 +55,6 @@ def parse_dataset(dataset_name):
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function
'''
assert (os.path.exists(dataset_name)) # see if data exists
f = open(dataset_name, 'r') # open data we gave in
lines = f.readlines() # read data
f.close()
#len of frequencies is 10 time shorter than before, so worked?
#put in frequencies instead of dataset?
#2nd loop cut frequencies by this function?
cutf = []
frequencies = []
for i in range(len(lines)):
l = lines[i].strip()
if len(l) > 0 and l[0] is not '#':
temporary = list(map(float, l.split()))
frequencies.append(temporary[1])
'''
def mean_noise_cut(frequencies, time, n):
cutf = []
cutt = []
@ -83,4 +64,29 @@ def mean_noise_cut(frequencies, time, n):
mean = np.mean(f)
cutf.append(mean)
cutt.append(t)
return cutf, cutt
return cutf, cutt
def step_response(t, a1, a2, tau1, tau2):
r_step = a1*(1 - np.exp(-t/tau1)) + a2*(1- np.exp(-t/tau2))
return r_step
# plotten mit manual values for a1, ...
# auch mal a1 oder a2 auf Null setzen.
def normalized_JAR(frequencies, time, onset=0, offset=100):
onset_point = onset - 10
offset_point = offset - 10
embed()
base_eod = []
step_eod = []
np.mean(f[(time >= onset_point) & time < onset])
for i in range(len(frequencies)):
if time < onset and time > onset_point:
base_eod.append(frequencies[i])
if time[i] < offset and time[i] > offset_range:
step_eod.append(frequencies[i])

View File

@ -37,6 +37,9 @@ mean1 = np.mean(z, axis=1)
print(mean0)
print(mean1)
'''
for dataset in datasets:
cf = noise_reduce(dataset, 10)
embed()
t = [600, 650]
x = 1 - np.exp(t / 11)
print(x)
a, b ,c,d = normalized_JAR(fre)

View File

@ -6,10 +6,10 @@ import numpy as np
from IPython import embed
from jar_functions import parse_dataset
from jar_functions import mean_noise_cut
from jar_functions import step_response
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
# (os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
eodf = []
deltaf = []
@ -27,76 +27,62 @@ for dataset in datasets:
#input of the function
t, f, a, e, d, s= parse_dataset(dataset)
'times'
# same for time in both loops
minimumt = min(len(t[0]), len(t[1]))
t0 = t[0][:minimumt]
t1 = t[1][:minimumt]
# new time with wished timespan because it varies for different loops
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
# in case complete measuring time devided by total number of datapoints
'frequencies'
# minimum datapoint lenght of both loops of frequencies
minimumf = min(len(f[0]), len(f[1]))
# new frequencies to minimum for both loops
f0 = f[0][:minimumf]
# interpolation
f0new = np.interp(tnew, t0, f0)
f1 = f[1] #[:minimumf]
# in case complete measuring time devided by total number of datapoints
# interpolation
f1new = np.interp(tnew, t1, f1)
f0 = np.interp(tnew, t[0], f[0])
f1 = np.interp(tnew, t[1], f[1])
#new array with frequencies of both loops as two lists put together
frequency = np.array([f0new, f1new])
frequency = np.array([f0, f1])
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
mf = np.mean(frequency, axis=0) #.T as transition (1,0) -> (0,1)
mf = np.mean(frequency, axis=0)
#appending data
eodf.append(e)
deltaf.append(d)
stimulusf.append(s)
amplitude.append(a)
frequency_mean.append(mf)
time.append(tnew)
for i in range(len(frequency_mean)):
for n in [10, 50, 100, 1000, 10000, 20000, 30000]:
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=n)
plt.plot(ct, cf, label='n=%d' % n)
#plt.plot(ct, cf, label='n=%d' % n)
ct_array = np.array(ct) +10
r_step = step_response(t=ct_array, a1=0.58, a2=0, tau1=100, tau2=100)
#plt.plot(r_step)
for a in [0, 1, 2]:
for b in [0, 1, 2]:
r_step = step_response(t = ct_array, a1 = a, a2 = b, tau1 = 30, tau2 = 60)
plt.plot(time[0], frequency_mean[0])
plt.show()
embed()
'plotting'
plt.xlim([-10,200])
#plt.ylim([400, 1000])
plt.xlabel('time [s]')
plt.ylabel('frequency [Hz]')
#plt.title('noise_cut_n=100')
#plt.savefig('noise_cut_n=100')
#plt.ylabel('rel. JAR magnitude')
#plt.title('fit_function(a1=0)')
#plt.savefig('fit_function(a1=0)')
plt.legend()
plt.show()
def double_exp(t, a1, a2, tau1, tau2):
return a1*np.exp(-t/tau1)
# plotten mit manual values for a1, ...
# auch mal a1 oder a2 auf Null setzen.
#evtl. normiert darstellen (frequency / baseline frequency?)?
#Zeitkonstante: von sec. 0 bis 63%? relative JAR
'''
'controll of interpolation'
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(tnew, mf, c = 'r', marker = 'o', ls = 'solid', label = 'new')
ax.plot(t0, f0, c = 'b', marker = '+', ls = '-', label = 'loop_0')
ax.plot(t1, f1, c= 'g', marker = '+', ls = '-', label = 'loop_1')
plt.legend(loc = 'best')
#plt.plot(tnew, mf, marker = 'r-o', label = new, t0, f0, marker = 'b-+', label = loop_0, t1, f1, marker = 'g-+', label = loop_1)
plt.show()
'''
# normiert darstellen (frequency / mean von baseline frequency?)?
# Zeitkonstante: von sec. 0 bis 63%? relative JAR