This commit is contained in:
xaver 2020-06-25 14:37:52 +02:00
parent 8b97b8f304
commit 539cc9ed09
2 changed files with 76 additions and 20 deletions

View File

@ -1,24 +1,50 @@
import os
import os #compability with windows
def parse_dataset(dataset_name):
assert(os.path.exists(dataset_name))
f = open(dataset_name, 'r')
lines = f.readlines()
f.close()
assert(os.path.exists(dataset_name)) #see if data exists
f = open(dataset_name, 'r') #open data we gave in
lines = f.readlines() #read data
f.close() #?
time = []
frequency = []
amplitude = []
eodfs = [] #metadata lists for every loop
deltafs = []
stimulusfs = []
times = [] #data itself
frequencies = []
amplitudes = []
time = [] #temporary lists with data we put in the lists above
ampl = []
freq = []
for i in range(len(lines)):
l = lines[i].strip()
l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar)
if "#" in l and "EODf" in l: #if line starts with # EODf:
eodfs.append(float(l.split(':')[-1].strip()[:-2])) #append: line splitted by ':' the 2nd part ([-1],
if "#" in l and "Delta f" in l: #which got striped so we sure there is no space at the end,
deltafs.append(float(l.split(':')[-1].strip()[:-2])) #from that all expect the last two signs (Hz unit)
if "#" in l and "StimulusFrequency" in l: #this for different metadata in different lists
stimulusfs.append(float(l.split(':')[-1].strip()[:-2]))
if '#Key' in l:
if len(time) != 0: #therefore empty in the first round
times.append(time) #2nd loop means time != 0, so we put the times/amplitudes/frequencies to
amplitudes.append(ampl) #the data of the first loop
frequencies.append(freq)
time = [] #temporary lists with the data of the 2nd loop which we put to the lists above
ampl = []
freq = []
if len(l) > 0 and l[0] is not '#':
temp = list(map(float, l.split()))
if len(l) > 0 and l[0] is not '#': #line not empty and doesnt start with #
temporary = list(map(float, l.split())) #temporary list where we got 3 index splitted by spacebar, map to find them
time.append(temporary[0]) #temporary lists with the data at that place, respectively
freq.append(temporary[1])
ampl.append(temporary[2])
time.append(temp[0])
frequency.append(temp[1])
amplitude.append(temp[2])
times.append(time) #append data from one list to another
amplitudes.append(ampl)
frequencies.append(freq)
return time, frequency, amplitude
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function

View File

@ -7,26 +7,56 @@ from IPython import embed
from jar_functions import parse_dataset
dataset = os.path.join('D:\\', 'jar_project', 'JAR', '2020-06-22-ac', 'beats-eod.dat')
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat'))]
# (os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
t, f, a = parse_dataset(dataset)
time = []
frequency = []
amplitude = []
avg_frequency = np.mean(f)
print(avg_frequency)
for dataset in datasets:
t, f, a, e= parse_dataset(dataset)
embed()
time.append(t)
frequency.append(f)
amplitude.append(a)
minimum = min(len(frequency[0]), len(frequency[1]))
f1 = frequency[0][:minimum]
f2 = frequency[1][:minimum]
frequency = f1 + f2
embed()
#frequency = np.array(frequency)
mean = np.mean(frequency, axis=0)
for i in range(len(minimum)):
mean(frequency[0][i], frequency[1][i])
for f in frequency:
print(np.mean(f))
# mean_f = np.mean(x) for x in zip(freqeuncies1, frequencies2)
embed()
#nächste Schritt: weitere Messungen einfügen und dann über alle Trials mitteln, evtl. normiert darstellen (frequency / baseline frequency?)?
#Zeitkonstante: von sec. 0 bis 63%? relative JAR
'''
plt.plot(t, f)
plt.xlabel('time [s]')
plt.ylabel('frequency [Hz]')
plt.xlim([-10,200])
plt.title('second try because first try was sold out')
plt.show()
plt.show()'''