efish_tracking/etrack/distance_calibration.py

253 lines
9.6 KiB
Python

from multiprocessing import allow_connection_pickling
from turtle import left
from xml.dom.expatbuilder import FILTER_ACCEPT
from cv2 import MARKER_TRIANGLE_UP, calibrationMatrixValues, mean, threshold
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
import sys
from IPython import embed
from etrack import MarkerTask, ImageMarker
from calibration_functions import crop_frame, threshold_crossings, checkerboard_position, filter_data
class DistanceCalibration():
def __init__(self, file_name, frame_number, x_0=154, y_0=1318, cam_dist=1.36, width=1.35, height=0.805, width_pixel=1900, height_pixel=200, checkerboard_width=0.24, checkerboard_height=0.18,
checkerboard_width_pixel=500, checkerboard_height_pixel=350, rectangle_width=0.024, rectangle_height=0.0225, rectangle_width_pixel=100, rectangle_height_pixel=90,
rectangle_count_width=9, rectangle_count_height=7) -> None:
super().__init__()
# aktualisieren
"""Calibration of the dimensions of the tank. Conversion of pixel into meter. Width refers to the "x-axis", height to the "y-axis" of the tank.
Args:
file_name (_type_): _description_
x_0 (int, optional): X-value of the "origin" of the tank. Defaults to 0.
y_0 (int, optional): Y-value of the "origin" of the tank. Defaults to 0.
cam_dist (int, optional): Distance of camera lense to tank floor. Defaults to 1.36.
width (int, optional): Width in meter from one lightened corner of the tank to the other. Defaults to 1.35.
height (int, optional): Height in meter from one lightened corner of the tank to the other. Defaults to 1.35.
width_pixel (int, optional): Width in pixel from one lightened corner of the tank to the other. Defaults to 1975.
height_pixel (int, optional): Height in pixel from one lightened corner of the tank to the other. Defaults to 1375.
rectangle_width (float, optional): Width of one black or corresponding white rectangle of the checkerboard. Defaults to 0.024.
rectangle_height (float, optional): Height of one black or corresponding white rectangle of the checkerboard. Defaults to 0.0225.
rectangle_count_width (int, optional): Number of black rectangles over the width of the whole checkerboard. Defaults to 9.
rectangle_count_height (int, optional): Number of black rectangles over the height of the whole checkerboard. Defaults to 7.
"""
self._file_name = file_name
self._x_0 = x_0
self._y_0 = y_0
self._width_pix = width_pixel
self._height_pix = height_pixel
self._cam_dist = cam_dist
self._width = width
self._height = height
self._cb_width = checkerboard_width
self._cb_height = checkerboard_height
self._cb_width_pix = checkerboard_width_pixel
self._cb_height_pix = checkerboard_height_pixel
self._rect_width = rectangle_width
self._rect_height = rectangle_height
self._x_factor = self.width / self.width_pix # m/pix
self._y_factor = self.height / self.height_pix # m/pix
# self.mark_crop_positions
# self.threshold_crossings
# self.checkerboard_position
# self.filter_data
@property
def x_0(self):
return self._x_0
@x_0.setter
def x_0(self, value):
self._x_0 = value
@property
def y_0(self):
return self._y_0
@y_0.setter
def y_0(self, value):
self._y_0 = value
@property
def cam_dist(self):
return self._cam_dist
@property
def width(self):
return self._width
@width.setter
def width(self, value):
self._width = value
@property
def height(self):
return self._height
@height.setter
def height(self, value):
self._height = value
@property
def width_pix(self):
return self._width_pix
@width_pix.setter
def width_pix(self, value):
self._width_pix = value
@property
def height_pix(self):
return self._height_pix
@height_pix.setter
def height_pix(self, value):
self._height_pix_ = value
@property
def cb_width(self):
return self._cb_width
@cb_width.setter
def cb_width(self, value):
self._cb_width = value
@property
def cb_height(self):
return self._cb_height
@cb_height.setter
def cb_height(self, value):
self._cb_height = value
@property
def x_factor(self):
return self._x_factor
@property
def y_factor(self):
return self._y_factor
def mark_crop_positions(self):
task = MarkerTask("crop area", ["bottom left corner", "top left corner", "top right corner", "bottom right corner"], "Mark crop area")
im = ImageMarker([task])
marker_positions = im.mark_movie(file_name, frame_number)
print(marker_positions)
np.save('marker_positions', marker_positions)
return marker_positions
def detect_checkerboard(self, filename, frame_number, marker_positions):
if not os.path.exists(filename):
raise IOError("file %s does not exist!" % filename)
video = cv2.VideoCapture()
video.open(filename)
frame_counter = 0
success = True
frame = None
x_0 = self._x_0
y_0 = self._y_0
width_pix = self._width_pix
height_pix = self._height_pix
while success and frame_counter <= frame_number: # iterating until frame_counter == frame_number --> success (True)
print("Reading frame: %i" % frame_counter, end="\r")
success, frame = video.read()
frame_counter += 1
marker_positions = np.load('marker_positions.npy', allow_pickle=True) # load saved numpy marker positions file
bottom_left_marker = marker_positions[0]['bottom left corner']
bottom_right_marker= marker_positions[0]['bottom right corner']
top_left_marker = marker_positions[0]['top left corner']
top_right_marker = marker_positions[0]['top right corner']
# care: y-axis is inverted, top values are low, bottom values are high
frame_width, frame_height, diff_width, diff_height, _, _ = crop_frame(frame, marker_positions) # crop frame to given marker positions
thresh_fact = 7 # factor by which the min/max is divided to calculate the upper and lower thresholds
# filtering/smoothing of data using kernel with n datapoints
kernel = 4
diff_width = filter_data(diff_width, n=kernel) # for widht (x-axis)
diff_height = filter_data(diff_height, n=kernel) # for height (y-axis)
# input data is derivation of color values of frame
lci_width, uci_width = threshold_crossings(diff_width, threshold_factor=thresh_fact) # threshold crossings (=edges of checkerboard) for width (x-axis)
lci_height, uci_height = threshold_crossings(diff_height, threshold_factor=thresh_fact) # ..for height (y-axis)
print('lower crossings:', lci_width)
print('upper crossings:', uci_width)
print('width..')
width_position, left_width_position, right_width_position = checkerboard_position(lci_width, uci_width)
print('height..')
height_position, left_height_position, right_height_position = checkerboard_position(lci_height, uci_height) # check if working
top_left = np.array([left_width_position, left_height_position])
top_right = np.array([right_width_position, left_height_position])
bottom_left = np.array([left_width_position, right_height_position])
bottom_right = np.array([right_width_position, right_height_position])
print(top_left, top_right, bottom_left, bottom_right)
fig, ax = plt.subplots()
ax.imshow(frame)
# ax.autoscale(False)
for p in top_left, top_right, bottom_left, bottom_right:
ax.scatter(p[0], p[1])
ax.set_xlim(bottom_left_marker[0], bottom_right_marker[0])
ax.set_ylim(bottom_left_marker[1], top_left_marker[1])
# plt.show()
# locations of checkerboard position do not yet fit the ones of the frame yet (visually checked)
# embed()
# quit()
# find which indices (=pixels) represent edges of checkerboard by the corresponding sequence of ups and downs
# both for width and height
# assign x and y positions for the checkerboard corners
# pixel to meter factor for default position with checkerboard in center of tank underneath camera
# plt.plot(diff_width)
plt.plot(diff_width)
# plt.axhline(np.min(diff_height) / thresh_fact)
# plt.axhline(np.max(diff_height) / thresh_fact)
for l in lci_width:
plt.axvline(l, color='yellow')
for u in uci_width:
plt.axvline(u, color='green')
# plt.plot(frame_width, label='height')
# plt.plot(frame_width, label='width')
plt.legend()
plt.show()
embed()
quit()
if __name__ == "__main__":
file_name = "/home/efish/etrack/videos/2022.03.28_3.mp4"
frame_number = 10
dc = DistanceCalibration(file_name=file_name, frame_number=frame_number)
# marker_positions = dc.mark_crop_positions()
dc.detect_checkerboard(file_name, frame_number=frame_number, marker_positions=np.load('marker_positions.npy', allow_pickle=True))
# print(sys.argv[0])
# print (sys.argv[1])
# vid1 = sys.argv[1]
# embed()