forked from jgrewe/efish_tracking
calibration_functions refinement + documentation
This commit is contained in:
parent
0488ca6e64
commit
73925ffd1d
163
etrack/calibration_functions.py
Normal file
163
etrack/calibration_functions.py
Normal file
@ -0,0 +1,163 @@
|
||||
from turtle import left
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
|
||||
def crop_frame(frame, marker_positions):
|
||||
|
||||
# load the four marker positions
|
||||
bottom_left = marker_positions[0]['bottom left corner']
|
||||
bottom_right = marker_positions[0]['bottom right corner']
|
||||
top_left = marker_positions[0]['top left corner']
|
||||
top_right = marker_positions[0]['top right corner']
|
||||
|
||||
# define boundaries of frame, taken by average of points on same line but slightly different pixel values
|
||||
left_bound = int(np.mean([bottom_left[0], top_left[0]]))
|
||||
right_bound = int(np.mean([bottom_right[0], top_right[0]]))
|
||||
top_bound = int(np.mean([top_left[1], top_right[1]]))
|
||||
bottom_bound = int(np.mean([bottom_left[1], bottom_right[1]]))
|
||||
|
||||
# crop the frame by boundary values
|
||||
crop_frame = frame[top_bound:bottom_bound, left_bound:right_bound]
|
||||
crop_frame = np.mean(crop_frame, axis=2) # mean over 3rd dimension (RGB/color values)
|
||||
|
||||
# mean over short or long side of the frame corresponding to x or y axis of picture
|
||||
frame_width = np.mean(crop_frame,axis=0)
|
||||
frame_height = np.mean(crop_frame,axis=1)
|
||||
|
||||
# differences of color values lying next to each other --> derivation
|
||||
diff_width = np.diff(frame_width)
|
||||
diff_height = np.diff(frame_height)
|
||||
|
||||
# two x vectors for better plotting
|
||||
x_width = np.arange(0, len(diff_width), 1)
|
||||
x_height = np.arange(0, len(diff_height), 1)
|
||||
|
||||
return frame_width, frame_height, diff_width, diff_height, x_width, x_height
|
||||
|
||||
def rotation_angle():
|
||||
pass
|
||||
|
||||
|
||||
def threshold_crossings(data, threshold_factor):
|
||||
# upper and lower threshold
|
||||
median_data = np.median(data)
|
||||
median_lower = median_data + np.min(data)
|
||||
median_upper = np.max(data) - median_data
|
||||
lower_threshold = median_lower / threshold_factor
|
||||
upper_threshold = median_upper / threshold_factor
|
||||
|
||||
# array with values if data >/< than threshold = True or not
|
||||
lower_crossings = np.diff(data < lower_threshold, prepend=False) # prepend: point after crossing
|
||||
upper_crossings = np.diff(data > upper_threshold, append=False) # append: point before crossing
|
||||
|
||||
# indices where crossings are
|
||||
lower_crossings_indices = np.argwhere(lower_crossings)
|
||||
upper_crossings_indices = np.argwhere(upper_crossings)
|
||||
|
||||
# sort out several crossings of same edge of checkerboard (due to noise)
|
||||
half_window_size = 10
|
||||
lower_peaks = []
|
||||
upper_peaks = []
|
||||
for lower_idx in lower_crossings_indices: # for every lower crossing..
|
||||
if lower_idx < half_window_size: # ..if indice smaller than window size near indice 0
|
||||
half_window_size = lower_idx
|
||||
lower_window = data[lower_idx[0] - int(half_window_size):lower_idx[0] + int(half_window_size)] # create data window from -window_size to +window_size
|
||||
|
||||
min_window = np.min(lower_window) # take minimum of window
|
||||
min_idx = np.where(data == min_window) # find indice where minimum is
|
||||
|
||||
lower_peaks.append(min_idx) # append to list
|
||||
for upper_idx in upper_crossings_indices: # same for upper crossings with max of window
|
||||
if upper_idx < half_window_size:
|
||||
half_window_size = upper_idx
|
||||
upper_window = data[upper_idx[0] - int(half_window_size) : upper_idx[0] + int(half_window_size)]
|
||||
|
||||
max_window = np.max(upper_window)
|
||||
max_idx = np.where(data == max_window)
|
||||
upper_peaks.append(max_idx)
|
||||
|
||||
# if several crossings create same peaks due to overlapping windows, only one (unique) will be taken
|
||||
lower_peaks = np.unique(lower_peaks)
|
||||
upper_peaks = np.unique(upper_peaks)
|
||||
|
||||
return lower_peaks, upper_peaks
|
||||
|
||||
|
||||
def checkerboard_position(lower_crossings_indices, upper_crossings_indices):
|
||||
"""Take crossing positions to generate a characteristic sequence for a corresponding position of the checkerboard inside the frame.
|
||||
Positional description has to be interpreted depending on the input data.
|
||||
|
||||
Args:
|
||||
lower_crossings_indices: Indices where lower threshold was crossed by derivation data.
|
||||
upper_crossings_indices: Indices where upper threshold was crossed by derivation data
|
||||
|
||||
Returns:
|
||||
checkerboard_position: General position where the checkerboard lays inside the frame along the axis of the input data.
|
||||
"""
|
||||
|
||||
# create zipped list with both indices
|
||||
zip_list = []
|
||||
for zl in lower_crossings_indices:
|
||||
zip_list.append(zl)
|
||||
for zu in upper_crossings_indices:
|
||||
zip_list.append(zu)
|
||||
|
||||
zip_list = np.sort(zip_list) # order by indice
|
||||
|
||||
# compare and assign zipped list to original indices lists and corresponding direction (to upper or lower threshold)
|
||||
sequence = []
|
||||
for z in zip_list:
|
||||
if z in lower_crossings_indices:
|
||||
sequence.append('down')
|
||||
else:
|
||||
sequence.append('up')
|
||||
print('sequence:', sequence)
|
||||
|
||||
# depending on order of crossings through upper or lower treshold, we get a characteristic sequence for a position of the checkerboard in the frame
|
||||
if sequence == ['up', 'down', 'up', 'down']: # first down, second up are edges of checkerboard
|
||||
print('in middle')
|
||||
checkerboard_position = 'middle'
|
||||
left_checkerboard_edge = zip_list[1]
|
||||
right_checkerboard_edge = zip_list[2]
|
||||
elif sequence == ['up', 'up', 'down']: # first and second up are edges of checkerboard
|
||||
print('at left')
|
||||
checkerboard_position = 'left'
|
||||
left_checkerboard_edge = zip_list[0]
|
||||
right_checkerboard_edge = zip_list[1]
|
||||
else: # first and second down are edges of checkerboard
|
||||
print('at right')
|
||||
checkerboard_position = 'right'
|
||||
left_checkerboard_edge = zip_list[1]
|
||||
right_checkerboard_edge = zip_list[2]
|
||||
|
||||
return checkerboard_position, left_checkerboard_edge, right_checkerboard_edge # position of checkerboard then will be returned
|
||||
|
||||
|
||||
def filter_data(data, n):
|
||||
"""Filter/smooth data with kernel of length n.
|
||||
|
||||
Args:
|
||||
data: Raw data.
|
||||
n: Number of datapoints the mean gets computed over.
|
||||
|
||||
Returns:
|
||||
filtered_data: Filtered data.
|
||||
"""
|
||||
new_data = np.zeros(len(data)) # empty vector where data will be put in in the following steps
|
||||
for k in np.arange(0, len(data) - n):
|
||||
kk = int(k)
|
||||
f = np.mean(data[kk:kk+n]) # mean over data over window from kk to kk+n
|
||||
kkk = int(kk+n / 2) # position where mean datapoint will be placed (so to say)
|
||||
if k == 0:
|
||||
new_data[:kkk] = f
|
||||
new_data[kkk] = f # assignment of value to datapoint
|
||||
new_data[kkk:] = f
|
||||
for nd in new_data[0:n-1]: # correction of left boundary effects (boundaries up to length of n were same number)
|
||||
nd_idx = np.argwhere(nd)
|
||||
new_data[nd_idx] = data[nd_idx]
|
||||
for nd in new_data[-1 - (n-1):-1]: # same as above, correction of right boundary effect
|
||||
nd_idx = np.argwhere(nd)
|
||||
new_data[nd_idx] = data[nd_idx]
|
||||
|
||||
return new_data
|
@ -1,6 +1,7 @@
|
||||
from multiprocessing import allow_connection_pickling
|
||||
from turtle import left
|
||||
from cv2 import MARKER_TRIANGLE_UP, calibrationMatrixValues, threshold
|
||||
from xml.dom.expatbuilder import FILTER_ACCEPT
|
||||
from cv2 import MARKER_TRIANGLE_UP, calibrationMatrixValues, mean, threshold
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import cv2
|
||||
@ -8,6 +9,7 @@ import os
|
||||
import sys
|
||||
from IPython import embed
|
||||
from etrack import MarkerTask, ImageMarker
|
||||
from calibration_functions import crop_frame, threshold_crossings, checkerboard_position, filter_data
|
||||
|
||||
|
||||
class DistanceCalibration():
|
||||
@ -51,8 +53,10 @@ class DistanceCalibration():
|
||||
self._x_factor = self.width / self.width_pix # m/pix
|
||||
self._y_factor = self.height / self.height_pix # m/pix
|
||||
|
||||
self.mark_crop_positions
|
||||
self.threshold_crossings
|
||||
# self.mark_crop_positions
|
||||
# self.threshold_crossings
|
||||
# self.checkerboard_position
|
||||
# self.filter_data
|
||||
|
||||
@property
|
||||
def x_0(self):
|
||||
@ -143,72 +147,6 @@ class DistanceCalibration():
|
||||
return marker_positions
|
||||
|
||||
|
||||
def crop_frame(self, frame, marker_positions):
|
||||
|
||||
bottom_left = marker_positions[0]['bottom left corner']
|
||||
bottom_right = marker_positions[0]['bottom right corner']
|
||||
top_left = marker_positions[0]['top left corner']
|
||||
top_right = marker_positions[0]['top right corner']
|
||||
|
||||
left_bound = int(np.mean([bottom_left[0], top_left[0]]))
|
||||
right_bound = int(np.mean([bottom_right[0], top_right[0]]))
|
||||
top_bound = int(np.mean([top_left[1], top_right[1]]))
|
||||
bottom_bound = int(np.mean([bottom_left[1], bottom_right[1]]))
|
||||
|
||||
crop_frame = frame[top_bound:bottom_bound, left_bound:right_bound]
|
||||
crop_frame = np.mean(crop_frame, axis=2)
|
||||
|
||||
frame_width = np.mean(crop_frame,axis=0)
|
||||
frame_height = np.mean(crop_frame,axis=1)
|
||||
|
||||
diff_width = np.diff(frame_width)
|
||||
diff_height = np.diff(frame_height)
|
||||
|
||||
x_width = np.arange(0, len(diff_width), 1)
|
||||
x_height = np.arange(0, len(diff_height), 1)
|
||||
return frame_width, frame_height, diff_width, diff_height, x_width, x_height
|
||||
|
||||
|
||||
def rotation_angle():
|
||||
pass
|
||||
|
||||
|
||||
def threshold_crossings(self, data, threshold_factor):
|
||||
lower_threshold = np.min(data) / threshold_factor
|
||||
upper_threshold = np.max(data) / threshold_factor
|
||||
|
||||
lower_crossings = np.diff(data < lower_threshold, prepend=False)
|
||||
upper_crossings = np.diff(data > upper_threshold, append=False)
|
||||
|
||||
lower_crossings_indices = np.argwhere(lower_crossings)
|
||||
upper_crossings_indices = np.argwhere(upper_crossings)
|
||||
|
||||
half_window_size = 10
|
||||
lower_peaks = []
|
||||
upper_peaks = []
|
||||
for lower_idx in lower_crossings_indices:
|
||||
if lower_idx < half_window_size:
|
||||
half_window_size = lower_idx
|
||||
window = data[lower_idx[0] - int(half_window_size):lower_idx[0] + int(half_window_size)]
|
||||
min_window = np.min(window)
|
||||
min_idx = np.where(data == min_window)
|
||||
lower_peaks.append(min_idx)
|
||||
|
||||
for upper_idx in upper_crossings_indices:
|
||||
if upper_idx < half_window_size:
|
||||
half_window_size = upper_idx
|
||||
window = data[upper_idx[0] - int(half_window_size) : upper_idx[0] + int(half_window_size)]
|
||||
|
||||
max_window = np.max(window)
|
||||
max_idx = np.where(data == max_window)
|
||||
upper_peaks.append(max_idx)
|
||||
|
||||
lower_peaks = np.unique(lower_peaks)
|
||||
upper_peaks = np.unique(upper_peaks)
|
||||
|
||||
return lower_peaks, upper_peaks
|
||||
|
||||
|
||||
def detect_checkerboard(self, filename, frame_number, marker_positions):
|
||||
|
||||
if not os.path.exists(filename):
|
||||
@ -229,71 +167,78 @@ class DistanceCalibration():
|
||||
success, frame = video.read()
|
||||
frame_counter += 1
|
||||
|
||||
marker_positions = np.load('marker_positions.npy', allow_pickle=True)
|
||||
marker_positions = np.load('marker_positions.npy', allow_pickle=True) # load saved numpy marker positions file
|
||||
bottom_left_marker = marker_positions[0]['bottom left corner']
|
||||
bottom_right_marker= marker_positions[0]['bottom right corner']
|
||||
top_left_marker = marker_positions[0]['top left corner']
|
||||
top_right_marker = marker_positions[0]['top right corner']
|
||||
|
||||
# care: y-axis is inverted, top values are low, bottom values are high
|
||||
|
||||
frame_width, frame_height, diff_width, diff_height, _, _ = dc.crop_frame(frame, marker_positions)
|
||||
frame_width, frame_height, diff_width, diff_height, _, _ = crop_frame(frame, marker_positions) # crop frame to given marker positions
|
||||
|
||||
# y-axis is inverted..
|
||||
thresh_fact = 7 # factor by which the min/max is divided to calculate the upper and lower thresholds
|
||||
|
||||
thresh_fact = 7
|
||||
lci_width, uci_width = dc.threshold_crossings(diff_width, threshold_factor=thresh_fact)
|
||||
lci_height, uci_height = dc.threshold_crossings(diff_height, threshold_factor=thresh_fact)
|
||||
# filtering/smoothing of data using kernel with n datapoints
|
||||
kernel = 4
|
||||
diff_width = filter_data(diff_width, n=kernel) # for widht (x-axis)
|
||||
diff_height = filter_data(diff_height, n=kernel) # for height (y-axis)
|
||||
|
||||
# input data is derivation of color values of frame
|
||||
lci_width, uci_width = threshold_crossings(diff_width, threshold_factor=thresh_fact) # threshold crossings (=edges of checkerboard) for width (x-axis)
|
||||
lci_height, uci_height = threshold_crossings(diff_height, threshold_factor=thresh_fact) # ..for height (y-axis)
|
||||
|
||||
print('lower crossings:', lci_width)
|
||||
print('upper crossings:', uci_width)
|
||||
|
||||
# make function for this
|
||||
zip_list = []
|
||||
for zl in lci_width:
|
||||
zip_list.append(zl)
|
||||
for zu in uci_width:
|
||||
zip_list.append(zu)
|
||||
|
||||
zip_list = np.sort(zip_list)
|
||||
|
||||
sequence = []
|
||||
for z in zip_list:
|
||||
if z in lci_width:
|
||||
sequence.append('down')
|
||||
else:
|
||||
sequence.append('up')
|
||||
print('sequence:', sequence)
|
||||
|
||||
if sequence == ['up', 'down', 'up', 'down']:
|
||||
print('in middle')
|
||||
# first down, second up are edges of checkerboard
|
||||
elif sequence == ['up', 'up', 'down']:
|
||||
print('at left')
|
||||
# first and second up are edges of checkerboard
|
||||
else:
|
||||
print('at right')
|
||||
# first and second down are edges of checkerboard
|
||||
|
||||
# find mistake in threshold detection (_7.mp4) where two detections at side (by thresh factor)
|
||||
print('width..')
|
||||
width_position, left_width_position, right_width_position = checkerboard_position(lci_width, uci_width)
|
||||
print('height..')
|
||||
height_position, left_height_position, right_height_position = checkerboard_position(lci_height, uci_height) # check if working
|
||||
|
||||
top_left = np.array([left_width_position, left_height_position])
|
||||
top_right = np.array([right_width_position, left_height_position])
|
||||
bottom_left = np.array([left_width_position, right_height_position])
|
||||
bottom_right = np.array([right_width_position, right_height_position])
|
||||
|
||||
print(top_left, top_right, bottom_left, bottom_right)
|
||||
fig, ax = plt.subplots()
|
||||
ax.imshow(frame)
|
||||
# ax.autoscale(False)
|
||||
for p in top_left, top_right, bottom_left, bottom_right:
|
||||
ax.scatter(p[0], p[1])
|
||||
ax.set_xlim(bottom_left_marker[0], bottom_right_marker[0])
|
||||
ax.set_ylim(bottom_left_marker[1], top_left_marker[1])
|
||||
# plt.show()
|
||||
|
||||
# locations of checkerboard position do not yet fit the ones of the frame yet (visually checked)
|
||||
|
||||
# embed()
|
||||
# quit()
|
||||
# find which indices (=pixels) represent edges of checkerboard by the corresponding sequence of ups and downs
|
||||
# both for width and height
|
||||
# assign x and y positions for the checkerboard corners
|
||||
|
||||
# pixel to meter factor for default position with checkerboard in center of tank underneath camera
|
||||
|
||||
# plt.plot(diff_width)
|
||||
plt.plot(diff_width)
|
||||
plt.axhline(np.min(diff_width) / thresh_fact)
|
||||
plt.axhline(np.max(diff_width) / thresh_fact)
|
||||
# plt.axhline(np.min(diff_height) / thresh_fact)
|
||||
# plt.axhline(np.max(diff_height) / thresh_fact)
|
||||
for l in lci_width:
|
||||
plt.axvline(l, color='yellow')
|
||||
for u in uci_width:
|
||||
plt.axvline(u, color='green')
|
||||
# plt.plot(frame_height)
|
||||
plt.plot(frame_width)
|
||||
# plt.plot(frame_width, label='height')
|
||||
# plt.plot(frame_width, label='width')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
embed()
|
||||
quit()
|
||||
|
||||
# rotation angle
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
file_name = "/home/efish/etrack/videos/2022.03.28_7.mp4"
|
||||
file_name = "/home/efish/etrack/videos/2022.03.28_3.mp4"
|
||||
frame_number = 10
|
||||
dc = DistanceCalibration(file_name=file_name, frame_number=frame_number)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user