101 lines
3.6 KiB
TeX
101 lines
3.6 KiB
TeX
\chapter{Spectral analysis}
|
|
|
|
\section{The Fourier Transform}
|
|
Complex numbers... magnitude and phase
|
|
|
|
Time domain --- Frequency domain, Fourier Space
|
|
|
|
\subsection{Fast Fourier transform}
|
|
|
|
\section{Power spectrum}
|
|
\[ S_{x,x} = |X(f)|^2 \]
|
|
|
|
Parceval theorem:
|
|
\[ \int_{-\infty}^{+\infty} x(t)^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df \]
|
|
|
|
Autocorrelation:
|
|
|
|
Wiener-Kinchin theorem:
|
|
\[ {\cal F}\{Corr(x,x)\} = |X(f)|^2 \]
|
|
|
|
\section{Spectrogram}
|
|
|
|
\section{Cross spectrum}
|
|
\[ S_{x,y} = X(f)Y^*(f) \]
|
|
is complex valued (magnitude and phase)!
|
|
|
|
Correlation theorem:
|
|
\[ {\cal F}\{Corr(x,y)\} = X(f)Y^*(f) = S_{x,y} \]
|
|
|
|
\section{Transfer function}
|
|
The complex valued transfer function of a linear, noiseless system
|
|
relating stimulus $s(t)$ and response $r(t)$ is
|
|
\begin{equation}
|
|
\label{transfer}
|
|
H(\omega) = \frac{R(\omega)}{S(\omega)}
|
|
\end{equation}
|
|
where $S(\omega)$ and $R(\omega)$ are the Fourier transformed stimulus
|
|
and response, respectively. By means of the transfer function, the
|
|
response of the system to a stimulus can be predicted according to
|
|
\begin{equation}
|
|
R(\omega) = H(\omega) S(\omega)
|
|
\end{equation}
|
|
|
|
Now, if the system is noisy, then the transfer function can only
|
|
predict the mean response $\langle R \rangle_n$, averaged over the
|
|
noise, i.e. averaged over responses evoked by several presentations
|
|
of the same, frozen stimulus:
|
|
\begin{equation}
|
|
\langle R(\omega) \rangle_n = H(\omega) S(\omega)
|
|
\end{equation}
|
|
|
|
Both sides of this equation can be multiplied by the complex conjugate
|
|
stimulus $S^*(\omega)$. Since the stimulus is always the same,
|
|
$S^*(\omega)$ can be pulled into the average over the noise and we get
|
|
\begin{equation}
|
|
\langle R(\omega)S^*(\omega) \rangle_n = H(\omega) S(\omega)S^*(\omega)
|
|
\end{equation}
|
|
The right hand side can also be averaged over the noise, but it makes
|
|
no difference, because neither $S(\omega)$ nore $H(\omega)$ depend on
|
|
the noise. In addition, we can average both sides over different
|
|
realizations of the stimulus. We denote this average by $\langle \cdot
|
|
\rangle_s$. Because the transfer function does note depend on the
|
|
stimulus it can be pulled out of the stimulus average and we get
|
|
\begin{equation}
|
|
\langle\langle R(\omega)S^*(\omega) \rangle_n\rangle_s = H(\omega) \langle \langle S(\omega)S^*(\omega) \rangle_n \rangle_s
|
|
\end{equation}
|
|
|
|
Finally, let's solve for the transfer function and denote both
|
|
averages by $\langle \cdot \rangle$:
|
|
\begin{equation}
|
|
\label{transfercsd}
|
|
H(\omega) = \frac{\langle R(\omega)S^*(\omega) \rangle}{\langle S(\omega)S^*(\omega) \rangle}
|
|
\end{equation}
|
|
The transfer function of a noisy system is estimated by dividing the
|
|
cross spectrum by the power spectrum of the stimulus.
|
|
|
|
Computing the squared gain like this
|
|
\begin{equation}
|
|
|H(\omega)|^2 = \frac{R(\omega)R^*(\omega)}{S(\omega)S^*(\omega)}
|
|
\end{equation}
|
|
is not possible, it again requires to average over the noise
|
|
\begin{equation}
|
|
|H(\omega)|^2 = \frac{\langle R(\omega)R^*(\omega) \rangle_n}{S(\omega)S^*(\omega)}
|
|
\end{equation}
|
|
Subsequent averaging over stimuli leads to
|
|
\begin{equation}
|
|
|H(\omega)|^2 = \left\langle\frac{\langle R(\omega)R^*(\omega) \rangle_n}{S(\omega)S^*(\omega)} \right\rangle_s
|
|
\end{equation}
|
|
which is \emph{not} just the power spectrum $\langle R R^* \rangle$ of
|
|
the response devided by the power spectrum $\langle S S^* \rangle$ of
|
|
the stimulus
|
|
\begin{equation}
|
|
|H(\omega)|^2 \ne \frac{\langle\langle R(\omega)R^*(\omega) \rangle_n\rangle_s}{\langle S(\omega)S^*(\omega)\rangle_s}
|
|
\end{equation}
|
|
The gain can not be computed by simply dividing the response spectrum
|
|
by the stimulus spectrum.
|
|
|
|
\section{Coherence function}
|
|
|
|
\subsection{Forward and reverse filter}
|