\chapter{Spectral analysis} \section{The Fourier Transform} Complex numbers... magnitude and phase Time domain --- Frequency domain, Fourier Space \subsection{Fast Fourier transform} \section{Power spectrum} \[ S_{x,x} = |X(f)|^2 \] Parceval theorem: \[ \int_{-\infty}^{+\infty} x(t)^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df \] Autocorrelation: Wiener-Kinchin theorem: \[ {\cal F}\{Corr(x,x)\} = |X(f)|^2 \] \section{Spectrogram} \section{Cross spectrum} \[ S_{x,y} = X(f)Y^*(f) \] is complex valued (magnitude and phase)! Correlation theorem: \[ {\cal F}\{Corr(x,y)\} = X(f)Y^*(f) = S_{x,y} \] \section{Transfer function} The complex valued transfer function of a linear, noiseless system relating stimulus $s(t)$ and response $r(t)$ is \begin{equation} \label{transfer} H(\omega) = \frac{R(\omega)}{S(\omega)} \end{equation} where $S(\omega)$ and $R(\omega)$ are the Fourier transformed stimulus and response, respectively. By means of the transfer function, the response of the system to a stimulus can be predicted according to \begin{equation} R(\omega) = H(\omega) S(\omega) \end{equation} Now, if the system is noisy, then the transfer function can only predict the mean response $\langle R \rangle_n$, averaged over the noise, i.e. averaged over responses evoked by several presentations of the same, frozen stimulus: \begin{equation} \langle R(\omega) \rangle_n = H(\omega) S(\omega) \end{equation} Both sides of this equation can be multiplied by the complex conjugate stimulus $S^*(\omega)$. Since the stimulus is always the same, $S^*(\omega)$ can be pulled into the average over the noise and we get \begin{equation} \langle R(\omega)S^*(\omega) \rangle_n = H(\omega) S(\omega)S^*(\omega) \end{equation} The right hand side can also be averaged over the noise, but it makes no difference, because neither $S(\omega)$ nore $H(\omega)$ depend on the noise. In addition, we can average both sides over different realizations of the stimulus. We denote this average by $\langle \cdot \rangle_s$. Because the transfer function does note depend on the stimulus it can be pulled out of the stimulus average and we get \begin{equation} \langle\langle R(\omega)S^*(\omega) \rangle_n\rangle_s = H(\omega) \langle \langle S(\omega)S^*(\omega) \rangle_n \rangle_s \end{equation} Finally, let's solve for the transfer function and denote both averages by $\langle \cdot \rangle$: \begin{equation} \label{transfercsd} H(\omega) = \frac{\langle R(\omega)S^*(\omega) \rangle}{\langle S(\omega)S^*(\omega) \rangle} \end{equation} The transfer function of a noisy system is estimated by dividing the cross spectrum by the power spectrum of the stimulus. Computing the squared gain like this \begin{equation} |H(\omega)|^2 = \frac{R(\omega)R^*(\omega)}{S(\omega)S^*(\omega)} \end{equation} is not possible, it again requires to average over the noise \begin{equation} |H(\omega)|^2 = \frac{\langle R(\omega)R^*(\omega) \rangle_n}{S(\omega)S^*(\omega)} \end{equation} Subsequent averaging over stimuli leads to \begin{equation} |H(\omega)|^2 = \left\langle\frac{\langle R(\omega)R^*(\omega) \rangle_n}{S(\omega)S^*(\omega)} \right\rangle_s \end{equation} which is \emph{not} just the power spectrum $\langle R R^* \rangle$ of the response devided by the power spectrum $\langle S S^* \rangle$ of the stimulus \begin{equation} |H(\omega)|^2 \ne \frac{\langle\langle R(\omega)R^*(\omega) \rangle_n\rangle_s}{\langle S(\omega)S^*(\omega)\rangle_s} \end{equation} The gain can not be computed by simply dividing the response spectrum by the stimulus spectrum. \section{Coherence function} \subsection{Forward and reverse filter}