New exercise for point processes

This commit is contained in:
Jan Benda 2015-10-26 23:35:23 +01:00
parent 54a86daf60
commit ef9521a1fa
24 changed files with 437 additions and 123 deletions

View File

@ -1,4 +1,4 @@
function [ counts, bins ] = counthist( spikes, w ) function [counts, bins] = counthist(spikes, w)
% computes count histogram and compare them with Poisson distribution % computes count histogram and compare them with Poisson distribution
% spikes: a cell array of vectors of spike times % spikes: a cell array of vectors of spike times
% w: observation window duration for computing the counts % w: observation window duration for computing the counts
@ -18,18 +18,17 @@ function [ counts, bins ] = counthist( spikes, w )
end end
% histogram of spike counts: % histogram of spike counts:
maxn = max( n ); maxn = max( n );
[counts, bins ] = hist( n, 0:1:maxn+1 ); [counts, bins ] = hist( n, 0:1:maxn+10 );
counts = counts / sum( counts ); counts = counts / sum( counts );
if nargout == 0 if nargout == 0
bar( bins, counts ); bar( bins, counts );
hold on; hold on;
% Poisson distribution: % Poisson distribution:
rate = mean( r ); rate = mean( r );
x = 0:1:20; x = 0:1:maxn+10;
l = rate*w; l = rate*w;
y = l.^x.*exp(-l)./factorial(x); y = l.^x.*exp(-l)./factorial(x);
plot( x, y, 'r', 'LineWidth', 3 ); plot( x, y, 'r', 'LineWidth', 3 );
xlim( [ 0 20 ] );
hold off; hold off;
xlabel( 'counts k' ); xlabel( 'counts k' );
ylabel( 'P(k)' ); ylabel( 'P(k)' );

View File

@ -24,9 +24,9 @@ function isihist( isis, binwidth )
misi = mean( isis ); misi = mean( isis );
sdisi = std( isis ); sdisi = std( isis );
disi = sdisi^2.0/2.0/misi^3; disi = sdisi^2.0/2.0/misi^3;
text( 0.5, 0.6, sprintf( 'mean=%.1f ms', 1000.0*misi ), 'Units', 'normalized' ) text( 0.95, 0.8, sprintf( 'mean=%.1f ms', 1000.0*misi ), 'Units', 'normalized', 'HorizontalAlignment', 'right' )
text( 0.5, 0.5, sprintf( 'std=%.1f ms', 1000.0*sdisi ), 'Units', 'normalized' ) text( 0.95, 0.7, sprintf( 'std=%.1f ms', 1000.0*sdisi ), 'Units', 'normalized', 'HorizontalAlignment', 'right' )
text( 0.5, 0.4, sprintf( 'CV=%.2f', sdisi/misi ), 'Units', 'normalized' ) text( 0.95, 0.6, sprintf( 'CV=%.2f', sdisi/misi ), 'Units', 'normalized', 'HorizontalAlignment', 'right' )
%text( 0.5, 0.3, sprintf( 'D=%.1f Hz', disi ), 'Units', 'normalized' ) %text( 0.5, 0.3, sprintf( 'D=%.1f Hz', disi ), 'Units', 'normalized' )
end end

Binary file not shown.

View File

@ -3,8 +3,8 @@ function spikes = lifadaptspikes( trials, input, tmaxdt, D, tauadapt, adaptincr
% with an adaptation current % with an adaptation current
% trials: the number of trials to be generated % trials: the number of trials to be generated
% input: the stimulus either as a single value or as a vector % input: the stimulus either as a single value or as a vector
% tmaxdt: in case of a single value stimulus the duration of a trial % tmaxdt: in case of a single value stimulus: the duration of a trial
% in case of a vector as a stimulus the time step % in case of a vector as a stimulus: the time step
% D: the strength of additive white noise % D: the strength of additive white noise
% tauadapt: adaptation time constant % tauadapt: adaptation time constant
% adaptincr: adaptation strength % adaptincr: adaptation strength

Binary file not shown.

View File

@ -2,8 +2,8 @@ function spikes = lifspikes( trials, input, tmaxdt, D )
% Generate spike times of a leaky integrate-and-fire neuron % Generate spike times of a leaky integrate-and-fire neuron
% trials: the number of trials to be generated % trials: the number of trials to be generated
% input: the stimulus either as a single value or as a vector % input: the stimulus either as a single value or as a vector
% tmaxdt: in case of a single value stimulus the duration of a trial % tmaxdt: in case of a single value stimulus: the duration of a trial
% in case of a vector as a stimulus the time step % in case of a vector as a stimulus: the time step
% D: the strength of additive white noise % D: the strength of additive white noise
tau = 0.01; tau = 0.01;

View File

@ -0,0 +1,20 @@
function spikes = lifspikesoustim(trials, tmax, D, Iou, Dou, tauou )
% Generate spike times of a leaky integrate-and-fire neuron with frozen
% Ohrnstein-Uhlenbeck stimulus
% trials: the number of trials to be generated
% tmax: the duration of a trial
% D: the strength of additive white noise
% Iou: the mean input
% Dou: noise strength of the frozen OU noise
% tauou: time constant of the OU noise
dt = 1e-4;
input = zeros(round(tmax/dt), 1);
n = 0.0;
noise = sqrt(2.0*Dou)*randn(length(input), 1)/sqrt(dt);
for i=1:length(noise)
n = n + ( - n + noise(i))*dt/tauou;
input(i) = Iou + n;
end
spikes = lifspikes(trials, input, dt, D );
end

Binary file not shown.

View File

@ -0,0 +1,24 @@
w = 0.1;
cmax = 8;
pmax = 0.5;
subplot(1, 3, 1);
counthist(poissonspikes, w);
xlim([0 cmax])
set(gca, 'XTick', 0:2:cmax)
ylim([0 pmax])
title('Poisson');
subplot(1, 3, 2);
counthist(pifouspikes, w);
xlim([0 cmax])
set(gca, 'XTick', 0:2:cmax)
ylim([0 pmax])
title('PIF OU');
subplot(1, 3, 3);
counthist(lifadaptspikes, w);
xlim([0 cmax])
set(gca, 'XTick', 0:2:cmax)
ylim([0 pmax])
title('LIF adapt');
savefigpdf(gcf, 'counthist.pdf', 20, 7);

View File

@ -0,0 +1,19 @@
maxisi = 300.0;
subplot(1, 3, 1);
poissonisis = isis(poissonspikes);
isihist(poissonisis, 0.001);
xlim([0, maxisi])
title('Poisson');
subplot(1, 3, 2);
pifouisis = isis(pifouspikes);
isihist(pifouisis, 0.001);
xlim([0, maxisi])
title('PIF OU');
subplot(1, 3, 3);
lifadaptisis = isis(lifadaptspikes);
isihist(lifadaptisis, 0.001);
xlim([0, maxisi])
title('LIF adapt');
savefigpdf(gcf, 'isihist.pdf', 20, 7);

View File

@ -0,0 +1,17 @@
maxlag = 10;
rrange = [-0.5, 1.05];
subplot(1, 3, 1);
isiserialcorr(poissonisis, maxlag);
ylim(rrange)
title('Poisson');
subplot(1, 3, 2);
isiserialcorr(pifouisis, maxlag);
ylim(rrange)
title('PIF OU');
subplot(1, 3, 3);
isiserialcorr(lifadaptisis, maxlag);
ylim(rrange)
title('LIF adapt');
savefigpdf(gcf, 'serialcorr.pdf', 20, 7);

View File

@ -0,0 +1,13 @@
subplot(1, 3, 1);
spikeraster(poissonspikes, 1.0);
title('Poisson');
subplot(1, 3, 2);
spikeraster(pifouspikes, 1.0);
title('PIF OU');
subplot(1, 3, 3);
spikeraster(lifadaptspikes, 1.0);
title('LIF adapt');
savefigpdf(gcf, 'spikeraster.pdf', 15, 5);

Binary file not shown.

View File

@ -12,9 +12,9 @@ function spikes = poissonspikes( trials, rate, tmax )
p = 0.1 p = 0.1
dt = p/rate; dt = p/rate;
end end
spikes = cell( trials, 1 ); spikes = cell(trials, 1);
for k=1:trials for k=1:trials
x = rand( 1, round(tmax/dt) ); % uniform random numbers for each bin x = rand(round(tmax/dt), 1); % uniform random numbers for each bin
spikes{k} = find( x < p ) * dt; spikes{k} = find(x < p) * dt;
end end
end end

View File

@ -0,0 +1,14 @@
function p = psth(spikes, dt, tmax)
% plots a PSTH of the spikes with binwidth dt
t = 0.0:dt:tmax+dt;
p = zeros(1, length(t));
for k=1:length(spikes)
times = spikes{k};
[h, b] = hist(times, t);
p = p + h;
end
p = p/length(spikes)/dt;
t(end) = [];
p(end) = [];
plot(t, p);
end

View File

@ -1,15 +1,24 @@
function spikeraster( spikes ) function spikeraster(spikes, tmax)
% Display a spike raster of the spike times given in spikes. % Display a spike raster of the spike times given in spikes.
% spikes: a cell array of vectors of spike times % spikes: a cell array of vectors of spike times
% tmax: plot spike raster upto tmax seconds
ntrials = length(spikes); ntrials = length(spikes);
for k = 1:ntrials for k = 1:ntrials
times = 1000.0*spikes{k}; % conversion to ms times = spikes{k};
times = times(times<tmax);
if tmax < 1.5
times = 1000.0*times; % conversion to ms
end
for i = 1:length( times ) for i = 1:length( times )
line([times(i) times(i)],[k-0.4 k+0.4], 'Color', 'k' ); line([times(i) times(i)],[k-0.4 k+0.4], 'Color', 'k' );
end end
end end
xlabel( 'Time [ms]' ); if tmax < 1.5
xlabel( 'Time [ms]' );
else
xlabel( 'Time [s]' );
end
ylabel( 'Trials'); ylabel( 'Trials');
ylim( [ 0.3 ntrials+0.7 ] ) ylim( [ 0.3 ntrials+0.7 ] )

View File

@ -0,0 +1,12 @@
function r = spikerate(spikes, duration)
% returns the average spike rate of the spikes
% for the first duration seconds
% spikes: a cell array of vectors of spike times
rates = zeros(length(spikes),1);
for k = 1:length(spikes)
times = spikes{k};
rates(k) = sum(times<duration)/duration;
end
r = mean(rates);
end

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -11,11 +11,11 @@
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry} \usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot} \pagestyle{headandfoot}
\ifprintanswers \ifprintanswers
\newcommand{\stitle}{: L\"osungen} \newcommand{\stitle}{L\"osungen}
\else \else
\newcommand{\stitle}{} \newcommand{\stitle}{\"Ubung}
\fi \fi
\header{{\bfseries\large \"Ubung 6\stitle}}{{\bfseries\large Statistik}}{{\bfseries\large 27. Oktober, 2015}} \header{{\bfseries\large \stitle}}{{\bfseries\large Punktprozesse}}{{\bfseries\large 27. Oktober, 2015}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email: \firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.benda@uni-tuebingen.de} jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{} \runningfooter{}{\thepage}{}
@ -89,113 +89,98 @@ jan.benda@uni-tuebingen.de}
\begin{questions} \begin{questions}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\question \qt{Homogeneous Poisson process} \question \qt{Statistik von Spiketrains}
We use the Poisson process to generate spike trains on which we can test and imrpove some In Ilias findet ihr die Dateien \code{poisson.mat},
standard analysis functions. \code{pifou.mat}, und \code{lifadapt.mat}. Jede dieser Dateien
enth\"alt mehrere Trials von Spiketrains von einer bestimmten Art
von Neuron. Die Spikezeiten sind in Sekunden gemessen.
A homogeneous Poisson process of rate $\lambda$ (measured in Hertz) is a point process Mit den folgenden Aufgaben wollen wir die Statistik der Spiketrains
where the probability of an event is independent of time $t$ and independent of previous events. der drei Neurone miteinander vergleichen.
The probability $P$ of an event within a bin of width $\Delta t$ is \begin{parts}
\[ P = \lambda \cdot \Delta t \] \part Lade die Spiketrains aus den drei Dateien. Achte darauf, dass sie verschiedene
for sufficiently small $\Delta t$. Variablennamen bekommen.
\begin{parts} \begin{solution}
\begin{lstlisting}
clear all
load poisson.mat
whos
poissonspikes = spikes;
load pifou.mat;
pifouspikes = spikes;
load lifadapt.mat;
lifadaptspikes = spikes;
clear spikes;
\end{lstlisting}
\end{solution}
\part Write a function that generates $n$ homogeneous Poisson spike trains of a given duration $T_{max}$ \part Schreibe eine Funktion, die die Spikezeiten der ersten
with rate $\lambda$. \code{tmax} Sekunden in einem Rasterplot visualisiert. In jeder
\begin{solution} Zeile des Rasterplots wird ein Spiketrain dargestellt. Jeder
\lstinputlisting{hompoissonspikes.m} einzelne Spike wird als senkrechte Linie zu der Zeit des
\end{solution} Auftretens des Spikes geplottet. Benutze die Funktion, um die
Spikeraster der ersten 1\,s der drei Neurone zu plotten.
\begin{solution}
\lstinputlisting{../code/spikeraster.m}
\lstinputlisting{../code/plotspikeraster.m}
\mbox{}\\[-3ex]
\colorbox{white}{\includegraphics[width=1\textwidth]{spikeraster}}
\end{solution}
\part Using this function, generate a few trials and display them in a raster plot. \part Schreibe eine Funktion, die einen einzigen Vektor mit den Interspike-Intervallen
\begin{solution} aller Trials von Spikezeiten zur\"uckgibt.
\lstinputlisting{../code/spikeraster.m} \begin{solution}
\begin{lstlisting} \lstinputlisting{../code/isis.m}
spikes = hompoissonspikes( 10, 100.0, 0.5 ); \end{solution}
spikeraster( spikes )
\end{lstlisting}
\mbox{}\\[-3ex]
\colorbox{white}{\includegraphics[width=0.7\textwidth]{poissonraster100hz}}
\end{solution}
\part Write a function that extracts a single vector of interspike intervals \part Schreibe eine Funktion, die ein normiertes Histogramm aus
from the spike times returned by the first function. einem Vektor von Interspike-Intervallen, gegeben in Sekunden,
\begin{solution} berechnet und dieses mit richtiger Achsenbeschriftung plottet. Die
\lstinputlisting{../code/isis.m} Interspike-Intervalle sollen dabei in Millisekunden angegeben
\end{solution} werden. Die Funktion soll ausserdem den Mittelwert, die Standardabweichung,
und den Variationskoeffizienten der Interspike Intervalle berechnen
und diese im Plot mit angeben.
\part Write a function that plots the interspike-interval histogram Benutze diese und die vorherige Funktion, um die Interspike-Intervall Verteilung
from a vector of interspike intervals. The function should also der drei Neurone zu vergleichen.
compute the mean, the standard deviation, and the CV of the intervals \begin{solution}
and display the values in the plot. \lstinputlisting{../code/isihist.m}
\begin{solution} \lstinputlisting{../code/plotisih.m}
\lstinputlisting{../code/isihist.m} \mbox{}\\[-3ex]
\end{solution} \colorbox{white}{\includegraphics[width=1\textwidth]{isihist}}
\end{solution}
\part Compute histograms for Poisson spike trains with rate \part Schreibe eine Funktion, die die Seriellen Korrelationen der
$\lambda=100$\,Hz. Play around with $T_{max}$ and $n$ and the bin width Interspike Intervalle f\"ur lags bis zu \code{maxlag} berechnet
(start with 1\,ms) of the histogram. und plottet. Die Seriellen Korrelationen $\rho_k$ f\"ur lag $k$
How many der Interspike Intervalle $T_i$ sind wie folgt definiert:
interspike intervals do you approximately need to get a ``nice'' \[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i -
histogram? How long do you need to record from the neuron? \langle T \rangle) \rangle}{\langle (T_i - \langle T
\begin{solution} \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm
About 5000 intervals for 25 bins. This corresponds to a $5000 / 100\,\hertz = 50\,\second$ recording var}(T_i)} = {\rm corrcoef}(T_{i+k}, T_i) \] Benutze dies Funktion,
of a neuron firing with 100\,\hertz. um die Interspike Intervall Korrelationen der drei Neurone zu
\end{solution} vergleichen.
\begin{solution}
\lstinputlisting{../code/isiserialcorr.m}
\lstinputlisting{../code/plotserialcorr.m}
\colorbox{white}{\includegraphics[width=1\textwidth]{serialcorr}}
\end{solution}
\part Compare the histogram with the true distribution of intervals $T$ of the Poisson process \part Schreibe eine Funktion, die aus Spikezeiten
\[ p(T) = \lambda e^{-\lambda T} \] Histogramme aus der Anzahl von Spikes, die in Fenstern gegebener L\"ange $W$
for various rates $\lambda$. gez\"ahlt werden, erzeugt und plottet. Zus\"atzlich soll die Funktion
\begin{solution} die Poisson-Verteilung
\lstinputlisting{hompoissonisih.m} \[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \] mit der Rate
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissonisih100hz}} $\lambda$, die aus den Daten bestimmt werden kann, mit zu dem
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissonisih20hz}} Histogramm hineinzeichen.
\end{solution} \begin{solution}
\lstinputlisting{../code/counthist.m}
\lstinputlisting{../code/plotcounthist.m}
\colorbox{white}{\includegraphics[width=1\textwidth]{counthist}}
\end{solution}
\part What happens if you make the bin width of the histogram smaller than $\Delta t$
used for generating the Poisson spikes?
\begin{solution}
The bins between the discretization have zero entries. Therefore
the other ones become higher than they should be.
\end{solution}
\part Plot the mean interspike interval, the corresponding standard deviation, and the CV \end{parts}
as a function of the rate $\lambda$ of the Poisson process.
Compare the ../code with the theoretical expectations for the dependence on $\lambda$.
\begin{solution}
\lstinputlisting{hompoissonisistats.m}
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonisistats}}
\end{solution}
\part Write a function that computes serial correlations for the interspike intervals
for a range of lags.
The serial correlations $\rho_k$ at lag $k$ are defined as
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i - \langle T \rangle) \rangle}{\langle (T_i - \langle T \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm var}(T_i)} \]
Use this function to show that interspike intervals of Poisson spikes are independent.
\begin{solution}
\lstinputlisting{../code/isiserialcorr.m}
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonserial100hz}}
\end{solution}
\part Write a function that generates from spike times
a histogram of spike counts in a count window of given duration $W$.
The function should also plot the Poisson distribution
\[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \]
for the rate $\lambda$ determined from the spike trains.
\begin{solution}
\lstinputlisting{../code/counthist.m}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms}}
\end{solution}
\part Write a function that computes mean count, variance of count and the corresponding Fano factor
for a range of count window durations. The function should generate tow plots: one plotting
the count variance against the mean, the other one the Fano factor as a function of the window duration.
\begin{solution}
\lstinputlisting{../code/fano.m}
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonfano100hz}}
\end{solution}
\end{parts}
\end{questions} \end{questions}

View File

@ -0,0 +1,202 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{pslatex}
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: L\"osungen}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large \"Ubung 6\stitle}}{{\bfseries\large Statistik}}{{\bfseries\large 27. Oktober, 2015}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{dsfont}
\newcommand{\naZ}{\mathds{N}}
\newcommand{\gaZ}{\mathds{Z}}
\newcommand{\raZ}{\mathds{Q}}
\newcommand{\reZ}{\mathds{R}}
\newcommand{\reZp}{\mathds{R^+}}
\newcommand{\reZpN}{\mathds{R^+_0}}
\newcommand{\koZ}{\mathds{C}}
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\continue}{\ifprintanswers%
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\continuepage}{\ifprintanswers%
\newpage
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\newsolutionpage}{\ifprintanswers%
\newpage%
\else
\fi}
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qt}[1]{\textbf{#1}\\}
\newcommand{\pref}[1]{(\ref{#1})}
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{instructions}
\begin{questions}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\question \qt{Homogeneous Poisson process}
We use the Poisson process to generate spike trains on which we can test and imrpove some
standard analysis functions.
A homogeneous Poisson process of rate $\lambda$ (measured in Hertz) is a point process
where the probability of an event is independent of time $t$ and independent of previous events.
The probability $P$ of an event within a bin of width $\Delta t$ is
\[ P = \lambda \cdot \Delta t \]
for sufficiently small $\Delta t$.
\begin{parts}
\part Write a function that generates $n$ homogeneous Poisson spike trains of a given duration $T_{max}$
with rate $\lambda$.
\begin{solution}
\lstinputlisting{hompoissonspikes.m}
\end{solution}
\part Using this function, generate a few trials and display them in a raster plot.
\begin{solution}
\lstinputlisting{../code/spikeraster.m}
\begin{lstlisting}
spikes = hompoissonspikes( 10, 100.0, 0.5 );
spikeraster( spikes )
\end{lstlisting}
\mbox{}\\[-3ex]
\colorbox{white}{\includegraphics[width=0.7\textwidth]{poissonraster100hz}}
\end{solution}
\part Write a function that extracts a single vector of interspike intervals
from the spike times returned by the first function.
\begin{solution}
\lstinputlisting{../code/isis.m}
\end{solution}
\part Write a function that plots the interspike-interval histogram
from a vector of interspike intervals. The function should also
compute the mean, the standard deviation, and the CV of the intervals
and display the values in the plot.
\begin{solution}
\lstinputlisting{../code/isihist.m}
\end{solution}
\part Compute histograms for Poisson spike trains with rate
$\lambda=100$\,Hz. Play around with $T_{max}$ and $n$ and the bin width
(start with 1\,ms) of the histogram.
How many
interspike intervals do you approximately need to get a ``nice''
histogram? How long do you need to record from the neuron?
\begin{solution}
About 5000 intervals for 25 bins. This corresponds to a $5000 / 100\,\hertz = 50\,\second$ recording
of a neuron firing with 100\,\hertz.
\end{solution}
\part Compare the histogram with the true distribution of intervals $T$ of the Poisson process
\[ p(T) = \lambda e^{-\lambda T} \]
for various rates $\lambda$.
\begin{solution}
\lstinputlisting{hompoissonisih.m}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissonisih100hz}}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissonisih20hz}}
\end{solution}
\part What happens if you make the bin width of the histogram smaller than $\Delta t$
used for generating the Poisson spikes?
\begin{solution}
The bins between the discretization have zero entries. Therefore
the other ones become higher than they should be.
\end{solution}
\part Plot the mean interspike interval, the corresponding standard deviation, and the CV
as a function of the rate $\lambda$ of the Poisson process.
Compare the ../code with the theoretical expectations for the dependence on $\lambda$.
\begin{solution}
\lstinputlisting{hompoissonisistats.m}
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonisistats}}
\end{solution}
\part Write a function that computes serial correlations for the interspike intervals
for a range of lags.
The serial correlations $\rho_k$ at lag $k$ are defined as
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i - \langle T \rangle) \rangle}{\langle (T_i - \langle T \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm var}(T_i)} \]
Use this function to show that interspike intervals of Poisson spikes are independent.
\begin{solution}
\lstinputlisting{../code/isiserialcorr.m}
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonserial100hz}}
\end{solution}
\part Write a function that generates from spike times
a histogram of spike counts in a count window of given duration $W$.
The function should also plot the Poisson distribution
\[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \]
for the rate $\lambda$ determined from the spike trains.
\begin{solution}
\lstinputlisting{../code/counthist.m}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms}}
\end{solution}
\part Write a function that computes mean count, variance of count and the corresponding Fano factor
for a range of count window durations. The function should generate tow plots: one plotting
the count variance against the mean, the other one the Fano factor as a function of the window duration.
\begin{solution}
\lstinputlisting{../code/fano.m}
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonfano100hz}}
\end{solution}
\end{parts}
\end{questions}
\end{document}

Binary file not shown.

Binary file not shown.