New exercise for point processes
This commit is contained in:
parent
54a86daf60
commit
ef9521a1fa
@ -1,4 +1,4 @@
|
||||
function [ counts, bins ] = counthist( spikes, w )
|
||||
function [counts, bins] = counthist(spikes, w)
|
||||
% computes count histogram and compare them with Poisson distribution
|
||||
% spikes: a cell array of vectors of spike times
|
||||
% w: observation window duration for computing the counts
|
||||
@ -18,18 +18,17 @@ function [ counts, bins ] = counthist( spikes, w )
|
||||
end
|
||||
% histogram of spike counts:
|
||||
maxn = max( n );
|
||||
[counts, bins ] = hist( n, 0:1:maxn+1 );
|
||||
[counts, bins ] = hist( n, 0:1:maxn+10 );
|
||||
counts = counts / sum( counts );
|
||||
if nargout == 0
|
||||
bar( bins, counts );
|
||||
hold on;
|
||||
% Poisson distribution:
|
||||
rate = mean( r );
|
||||
x = 0:1:20;
|
||||
x = 0:1:maxn+10;
|
||||
l = rate*w;
|
||||
y = l.^x.*exp(-l)./factorial(x);
|
||||
plot( x, y, 'r', 'LineWidth', 3 );
|
||||
xlim( [ 0 20 ] );
|
||||
hold off;
|
||||
xlabel( 'counts k' );
|
||||
ylabel( 'P(k)' );
|
||||
|
@ -24,9 +24,9 @@ function isihist( isis, binwidth )
|
||||
misi = mean( isis );
|
||||
sdisi = std( isis );
|
||||
disi = sdisi^2.0/2.0/misi^3;
|
||||
text( 0.5, 0.6, sprintf( 'mean=%.1f ms', 1000.0*misi ), 'Units', 'normalized' )
|
||||
text( 0.5, 0.5, sprintf( 'std=%.1f ms', 1000.0*sdisi ), 'Units', 'normalized' )
|
||||
text( 0.5, 0.4, sprintf( 'CV=%.2f', sdisi/misi ), 'Units', 'normalized' )
|
||||
text( 0.95, 0.8, sprintf( 'mean=%.1f ms', 1000.0*misi ), 'Units', 'normalized', 'HorizontalAlignment', 'right' )
|
||||
text( 0.95, 0.7, sprintf( 'std=%.1f ms', 1000.0*sdisi ), 'Units', 'normalized', 'HorizontalAlignment', 'right' )
|
||||
text( 0.95, 0.6, sprintf( 'CV=%.2f', sdisi/misi ), 'Units', 'normalized', 'HorizontalAlignment', 'right' )
|
||||
%text( 0.5, 0.3, sprintf( 'D=%.1f Hz', disi ), 'Units', 'normalized' )
|
||||
end
|
||||
|
||||
|
BIN
pointprocesses/code/lifadapt.mat
Normal file
BIN
pointprocesses/code/lifadapt.mat
Normal file
Binary file not shown.
@ -3,8 +3,8 @@ function spikes = lifadaptspikes( trials, input, tmaxdt, D, tauadapt, adaptincr
|
||||
% with an adaptation current
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmaxdt: in case of a single value stimulus the duration of a trial
|
||||
% in case of a vector as a stimulus the time step
|
||||
% tmaxdt: in case of a single value stimulus: the duration of a trial
|
||||
% in case of a vector as a stimulus: the time step
|
||||
% D: the strength of additive white noise
|
||||
% tauadapt: adaptation time constant
|
||||
% adaptincr: adaptation strength
|
||||
|
BIN
pointprocesses/code/lifoustim.mat
Normal file
BIN
pointprocesses/code/lifoustim.mat
Normal file
Binary file not shown.
@ -2,8 +2,8 @@ function spikes = lifspikes( trials, input, tmaxdt, D )
|
||||
% Generate spike times of a leaky integrate-and-fire neuron
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmaxdt: in case of a single value stimulus the duration of a trial
|
||||
% in case of a vector as a stimulus the time step
|
||||
% tmaxdt: in case of a single value stimulus: the duration of a trial
|
||||
% in case of a vector as a stimulus: the time step
|
||||
% D: the strength of additive white noise
|
||||
|
||||
tau = 0.01;
|
||||
|
20
pointprocesses/code/lifspikesoustim.m
Normal file
20
pointprocesses/code/lifspikesoustim.m
Normal file
@ -0,0 +1,20 @@
|
||||
function spikes = lifspikesoustim(trials, tmax, D, Iou, Dou, tauou )
|
||||
% Generate spike times of a leaky integrate-and-fire neuron with frozen
|
||||
% Ohrnstein-Uhlenbeck stimulus
|
||||
% trials: the number of trials to be generated
|
||||
% tmax: the duration of a trial
|
||||
% D: the strength of additive white noise
|
||||
% Iou: the mean input
|
||||
% Dou: noise strength of the frozen OU noise
|
||||
% tauou: time constant of the OU noise
|
||||
|
||||
dt = 1e-4;
|
||||
input = zeros(round(tmax/dt), 1);
|
||||
n = 0.0;
|
||||
noise = sqrt(2.0*Dou)*randn(length(input), 1)/sqrt(dt);
|
||||
for i=1:length(noise)
|
||||
n = n + ( - n + noise(i))*dt/tauou;
|
||||
input(i) = Iou + n;
|
||||
end
|
||||
spikes = lifspikes(trials, input, dt, D );
|
||||
end
|
BIN
pointprocesses/code/pifou.mat
Normal file
BIN
pointprocesses/code/pifou.mat
Normal file
Binary file not shown.
24
pointprocesses/code/plotcounthist.m
Normal file
24
pointprocesses/code/plotcounthist.m
Normal file
@ -0,0 +1,24 @@
|
||||
w = 0.1;
|
||||
cmax = 8;
|
||||
pmax = 0.5;
|
||||
subplot(1, 3, 1);
|
||||
counthist(poissonspikes, w);
|
||||
xlim([0 cmax])
|
||||
set(gca, 'XTick', 0:2:cmax)
|
||||
ylim([0 pmax])
|
||||
title('Poisson');
|
||||
|
||||
subplot(1, 3, 2);
|
||||
counthist(pifouspikes, w);
|
||||
xlim([0 cmax])
|
||||
set(gca, 'XTick', 0:2:cmax)
|
||||
ylim([0 pmax])
|
||||
title('PIF OU');
|
||||
|
||||
subplot(1, 3, 3);
|
||||
counthist(lifadaptspikes, w);
|
||||
xlim([0 cmax])
|
||||
set(gca, 'XTick', 0:2:cmax)
|
||||
ylim([0 pmax])
|
||||
title('LIF adapt');
|
||||
savefigpdf(gcf, 'counthist.pdf', 20, 7);
|
19
pointprocesses/code/plotisih.m
Normal file
19
pointprocesses/code/plotisih.m
Normal file
@ -0,0 +1,19 @@
|
||||
maxisi = 300.0;
|
||||
subplot(1, 3, 1);
|
||||
poissonisis = isis(poissonspikes);
|
||||
isihist(poissonisis, 0.001);
|
||||
xlim([0, maxisi])
|
||||
title('Poisson');
|
||||
|
||||
subplot(1, 3, 2);
|
||||
pifouisis = isis(pifouspikes);
|
||||
isihist(pifouisis, 0.001);
|
||||
xlim([0, maxisi])
|
||||
title('PIF OU');
|
||||
|
||||
subplot(1, 3, 3);
|
||||
lifadaptisis = isis(lifadaptspikes);
|
||||
isihist(lifadaptisis, 0.001);
|
||||
xlim([0, maxisi])
|
||||
title('LIF adapt');
|
||||
savefigpdf(gcf, 'isihist.pdf', 20, 7);
|
17
pointprocesses/code/plotserialcorr.m
Normal file
17
pointprocesses/code/plotserialcorr.m
Normal file
@ -0,0 +1,17 @@
|
||||
maxlag = 10;
|
||||
rrange = [-0.5, 1.05];
|
||||
subplot(1, 3, 1);
|
||||
isiserialcorr(poissonisis, maxlag);
|
||||
ylim(rrange)
|
||||
title('Poisson');
|
||||
|
||||
subplot(1, 3, 2);
|
||||
isiserialcorr(pifouisis, maxlag);
|
||||
ylim(rrange)
|
||||
title('PIF OU');
|
||||
|
||||
subplot(1, 3, 3);
|
||||
isiserialcorr(lifadaptisis, maxlag);
|
||||
ylim(rrange)
|
||||
title('LIF adapt');
|
||||
savefigpdf(gcf, 'serialcorr.pdf', 20, 7);
|
13
pointprocesses/code/plotspikeraster.m
Normal file
13
pointprocesses/code/plotspikeraster.m
Normal file
@ -0,0 +1,13 @@
|
||||
subplot(1, 3, 1);
|
||||
spikeraster(poissonspikes, 1.0);
|
||||
title('Poisson');
|
||||
|
||||
subplot(1, 3, 2);
|
||||
spikeraster(pifouspikes, 1.0);
|
||||
title('PIF OU');
|
||||
|
||||
subplot(1, 3, 3);
|
||||
spikeraster(lifadaptspikes, 1.0);
|
||||
title('LIF adapt');
|
||||
|
||||
savefigpdf(gcf, 'spikeraster.pdf', 15, 5);
|
BIN
pointprocesses/code/poisson.mat
Normal file
BIN
pointprocesses/code/poisson.mat
Normal file
Binary file not shown.
@ -12,9 +12,9 @@ function spikes = poissonspikes( trials, rate, tmax )
|
||||
p = 0.1
|
||||
dt = p/rate;
|
||||
end
|
||||
spikes = cell( trials, 1 );
|
||||
spikes = cell(trials, 1);
|
||||
for k=1:trials
|
||||
x = rand( 1, round(tmax/dt) ); % uniform random numbers for each bin
|
||||
spikes{k} = find( x < p ) * dt;
|
||||
x = rand(round(tmax/dt), 1); % uniform random numbers for each bin
|
||||
spikes{k} = find(x < p) * dt;
|
||||
end
|
||||
end
|
||||
|
14
pointprocesses/code/psth.m
Normal file
14
pointprocesses/code/psth.m
Normal file
@ -0,0 +1,14 @@
|
||||
function p = psth(spikes, dt, tmax)
|
||||
% plots a PSTH of the spikes with binwidth dt
|
||||
t = 0.0:dt:tmax+dt;
|
||||
p = zeros(1, length(t));
|
||||
for k=1:length(spikes)
|
||||
times = spikes{k};
|
||||
[h, b] = hist(times, t);
|
||||
p = p + h;
|
||||
end
|
||||
p = p/length(spikes)/dt;
|
||||
t(end) = [];
|
||||
p(end) = [];
|
||||
plot(t, p);
|
||||
end
|
@ -1,15 +1,24 @@
|
||||
function spikeraster( spikes )
|
||||
function spikeraster(spikes, tmax)
|
||||
% Display a spike raster of the spike times given in spikes.
|
||||
% spikes: a cell array of vectors of spike times
|
||||
% tmax: plot spike raster upto tmax seconds
|
||||
|
||||
ntrials = length(spikes);
|
||||
for k = 1:ntrials
|
||||
times = 1000.0*spikes{k}; % conversion to ms
|
||||
times = spikes{k};
|
||||
times = times(times<tmax);
|
||||
if tmax < 1.5
|
||||
times = 1000.0*times; % conversion to ms
|
||||
end
|
||||
for i = 1:length( times )
|
||||
line([times(i) times(i)],[k-0.4 k+0.4], 'Color', 'k' );
|
||||
end
|
||||
end
|
||||
xlabel( 'Time [ms]' );
|
||||
if tmax < 1.5
|
||||
xlabel( 'Time [ms]' );
|
||||
else
|
||||
xlabel( 'Time [s]' );
|
||||
end
|
||||
ylabel( 'Trials');
|
||||
ylim( [ 0.3 ntrials+0.7 ] )
|
||||
|
||||
|
12
pointprocesses/code/spikerate.m
Normal file
12
pointprocesses/code/spikerate.m
Normal file
@ -0,0 +1,12 @@
|
||||
function r = spikerate(spikes, duration)
|
||||
% returns the average spike rate of the spikes
|
||||
% for the first duration seconds
|
||||
% spikes: a cell array of vectors of spike times
|
||||
|
||||
rates = zeros(length(spikes),1);
|
||||
for k = 1:length(spikes)
|
||||
times = spikes{k};
|
||||
rates(k) = sum(times<duration)/duration;
|
||||
end
|
||||
r = mean(rates);
|
||||
end
|
BIN
pointprocesses/exercises/UT_WBMW_Black_RGB.pdf
Normal file
BIN
pointprocesses/exercises/UT_WBMW_Black_RGB.pdf
Normal file
Binary file not shown.
BIN
pointprocesses/exercises/counthist.pdf
Normal file
BIN
pointprocesses/exercises/counthist.pdf
Normal file
Binary file not shown.
BIN
pointprocesses/exercises/isihist.pdf
Normal file
BIN
pointprocesses/exercises/isihist.pdf
Normal file
Binary file not shown.
@ -11,11 +11,11 @@
|
||||
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
|
||||
\pagestyle{headandfoot}
|
||||
\ifprintanswers
|
||||
\newcommand{\stitle}{: L\"osungen}
|
||||
\newcommand{\stitle}{L\"osungen}
|
||||
\else
|
||||
\newcommand{\stitle}{}
|
||||
\newcommand{\stitle}{\"Ubung}
|
||||
\fi
|
||||
\header{{\bfseries\large \"Ubung 6\stitle}}{{\bfseries\large Statistik}}{{\bfseries\large 27. Oktober, 2015}}
|
||||
\header{{\bfseries\large \stitle}}{{\bfseries\large Punktprozesse}}{{\bfseries\large 27. Oktober, 2015}}
|
||||
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
|
||||
jan.benda@uni-tuebingen.de}
|
||||
\runningfooter{}{\thepage}{}
|
||||
@ -89,114 +89,99 @@ jan.benda@uni-tuebingen.de}
|
||||
\begin{questions}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\question \qt{Homogeneous Poisson process}
|
||||
We use the Poisson process to generate spike trains on which we can test and imrpove some
|
||||
standard analysis functions.
|
||||
|
||||
A homogeneous Poisson process of rate $\lambda$ (measured in Hertz) is a point process
|
||||
where the probability of an event is independent of time $t$ and independent of previous events.
|
||||
The probability $P$ of an event within a bin of width $\Delta t$ is
|
||||
\[ P = \lambda \cdot \Delta t \]
|
||||
for sufficiently small $\Delta t$.
|
||||
\begin{parts}
|
||||
\question \qt{Statistik von Spiketrains}
|
||||
In Ilias findet ihr die Dateien \code{poisson.mat},
|
||||
\code{pifou.mat}, und \code{lifadapt.mat}. Jede dieser Dateien
|
||||
enth\"alt mehrere Trials von Spiketrains von einer bestimmten Art
|
||||
von Neuron. Die Spikezeiten sind in Sekunden gemessen.
|
||||
|
||||
Mit den folgenden Aufgaben wollen wir die Statistik der Spiketrains
|
||||
der drei Neurone miteinander vergleichen.
|
||||
\begin{parts}
|
||||
\part Lade die Spiketrains aus den drei Dateien. Achte darauf, dass sie verschiedene
|
||||
Variablennamen bekommen.
|
||||
\begin{solution}
|
||||
\begin{lstlisting}
|
||||
clear all
|
||||
load poisson.mat
|
||||
whos
|
||||
poissonspikes = spikes;
|
||||
load pifou.mat;
|
||||
pifouspikes = spikes;
|
||||
load lifadapt.mat;
|
||||
lifadaptspikes = spikes;
|
||||
clear spikes;
|
||||
\end{lstlisting}
|
||||
\end{solution}
|
||||
|
||||
\part Schreibe eine Funktion, die die Spikezeiten der ersten
|
||||
\code{tmax} Sekunden in einem Rasterplot visualisiert. In jeder
|
||||
Zeile des Rasterplots wird ein Spiketrain dargestellt. Jeder
|
||||
einzelne Spike wird als senkrechte Linie zu der Zeit des
|
||||
Auftretens des Spikes geplottet. Benutze die Funktion, um die
|
||||
Spikeraster der ersten 1\,s der drei Neurone zu plotten.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/spikeraster.m}
|
||||
\lstinputlisting{../code/plotspikeraster.m}
|
||||
\mbox{}\\[-3ex]
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{spikeraster}}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that generates $n$ homogeneous Poisson spike trains of a given duration $T_{max}$
|
||||
with rate $\lambda$.
|
||||
\begin{solution}
|
||||
\lstinputlisting{hompoissonspikes.m}
|
||||
\end{solution}
|
||||
\part Schreibe eine Funktion, die einen einzigen Vektor mit den Interspike-Intervallen
|
||||
aller Trials von Spikezeiten zur\"uckgibt.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isis.m}
|
||||
\end{solution}
|
||||
|
||||
\part Schreibe eine Funktion, die ein normiertes Histogramm aus
|
||||
einem Vektor von Interspike-Intervallen, gegeben in Sekunden,
|
||||
berechnet und dieses mit richtiger Achsenbeschriftung plottet. Die
|
||||
Interspike-Intervalle sollen dabei in Millisekunden angegeben
|
||||
werden. Die Funktion soll ausserdem den Mittelwert, die Standardabweichung,
|
||||
und den Variationskoeffizienten der Interspike Intervalle berechnen
|
||||
und diese im Plot mit angeben.
|
||||
|
||||
Benutze diese und die vorherige Funktion, um die Interspike-Intervall Verteilung
|
||||
der drei Neurone zu vergleichen.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isihist.m}
|
||||
\lstinputlisting{../code/plotisih.m}
|
||||
\mbox{}\\[-3ex]
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{isihist}}
|
||||
\end{solution}
|
||||
|
||||
\part Using this function, generate a few trials and display them in a raster plot.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/spikeraster.m}
|
||||
\begin{lstlisting}
|
||||
spikes = hompoissonspikes( 10, 100.0, 0.5 );
|
||||
spikeraster( spikes )
|
||||
\end{lstlisting}
|
||||
\mbox{}\\[-3ex]
|
||||
\colorbox{white}{\includegraphics[width=0.7\textwidth]{poissonraster100hz}}
|
||||
\end{solution}
|
||||
\part Schreibe eine Funktion, die die Seriellen Korrelationen der
|
||||
Interspike Intervalle f\"ur lags bis zu \code{maxlag} berechnet
|
||||
und plottet. Die Seriellen Korrelationen $\rho_k$ f\"ur lag $k$
|
||||
der Interspike Intervalle $T_i$ sind wie folgt definiert:
|
||||
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i -
|
||||
\langle T \rangle) \rangle}{\langle (T_i - \langle T
|
||||
\rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm
|
||||
var}(T_i)} = {\rm corrcoef}(T_{i+k}, T_i) \] Benutze dies Funktion,
|
||||
um die Interspike Intervall Korrelationen der drei Neurone zu
|
||||
vergleichen.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isiserialcorr.m}
|
||||
\lstinputlisting{../code/plotserialcorr.m}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{serialcorr}}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that extracts a single vector of interspike intervals
|
||||
from the spike times returned by the first function.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isis.m}
|
||||
\end{solution}
|
||||
\part Schreibe eine Funktion, die aus Spikezeiten
|
||||
Histogramme aus der Anzahl von Spikes, die in Fenstern gegebener L\"ange $W$
|
||||
gez\"ahlt werden, erzeugt und plottet. Zus\"atzlich soll die Funktion
|
||||
die Poisson-Verteilung
|
||||
\[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \] mit der Rate
|
||||
$\lambda$, die aus den Daten bestimmt werden kann, mit zu dem
|
||||
Histogramm hineinzeichen.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/counthist.m}
|
||||
\lstinputlisting{../code/plotcounthist.m}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{counthist}}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\end{parts}
|
||||
|
||||
\part Write a function that plots the interspike-interval histogram
|
||||
from a vector of interspike intervals. The function should also
|
||||
compute the mean, the standard deviation, and the CV of the intervals
|
||||
and display the values in the plot.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isihist.m}
|
||||
\end{solution}
|
||||
|
||||
\part Compute histograms for Poisson spike trains with rate
|
||||
$\lambda=100$\,Hz. Play around with $T_{max}$ and $n$ and the bin width
|
||||
(start with 1\,ms) of the histogram.
|
||||
How many
|
||||
interspike intervals do you approximately need to get a ``nice''
|
||||
histogram? How long do you need to record from the neuron?
|
||||
\begin{solution}
|
||||
About 5000 intervals for 25 bins. This corresponds to a $5000 / 100\,\hertz = 50\,\second$ recording
|
||||
of a neuron firing with 100\,\hertz.
|
||||
\end{solution}
|
||||
|
||||
\part Compare the histogram with the true distribution of intervals $T$ of the Poisson process
|
||||
\[ p(T) = \lambda e^{-\lambda T} \]
|
||||
for various rates $\lambda$.
|
||||
\begin{solution}
|
||||
\lstinputlisting{hompoissonisih.m}
|
||||
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissonisih100hz}}
|
||||
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissonisih20hz}}
|
||||
\end{solution}
|
||||
|
||||
\part What happens if you make the bin width of the histogram smaller than $\Delta t$
|
||||
used for generating the Poisson spikes?
|
||||
\begin{solution}
|
||||
The bins between the discretization have zero entries. Therefore
|
||||
the other ones become higher than they should be.
|
||||
\end{solution}
|
||||
|
||||
\part Plot the mean interspike interval, the corresponding standard deviation, and the CV
|
||||
as a function of the rate $\lambda$ of the Poisson process.
|
||||
Compare the ../code with the theoretical expectations for the dependence on $\lambda$.
|
||||
\begin{solution}
|
||||
\lstinputlisting{hompoissonisistats.m}
|
||||
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonisistats}}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that computes serial correlations for the interspike intervals
|
||||
for a range of lags.
|
||||
The serial correlations $\rho_k$ at lag $k$ are defined as
|
||||
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i - \langle T \rangle) \rangle}{\langle (T_i - \langle T \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm var}(T_i)} \]
|
||||
Use this function to show that interspike intervals of Poisson spikes are independent.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isiserialcorr.m}
|
||||
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonserial100hz}}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that generates from spike times
|
||||
a histogram of spike counts in a count window of given duration $W$.
|
||||
The function should also plot the Poisson distribution
|
||||
\[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \]
|
||||
for the rate $\lambda$ determined from the spike trains.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/counthist.m}
|
||||
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}}
|
||||
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms}}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that computes mean count, variance of count and the corresponding Fano factor
|
||||
for a range of count window durations. The function should generate tow plots: one plotting
|
||||
the count variance against the mean, the other one the Fano factor as a function of the window duration.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/fano.m}
|
||||
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonfano100hz}}
|
||||
\end{solution}
|
||||
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
202
pointprocesses/exercises/pointprocesses02.tex
Normal file
202
pointprocesses/exercises/pointprocesses02.tex
Normal file
@ -0,0 +1,202 @@
|
||||
\documentclass[12pt,a4paper,pdftex]{exam}
|
||||
|
||||
\usepackage[german]{babel}
|
||||
\usepackage{pslatex}
|
||||
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
|
||||
\usepackage{xcolor}
|
||||
\usepackage{graphicx}
|
||||
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
|
||||
|
||||
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
|
||||
\pagestyle{headandfoot}
|
||||
\ifprintanswers
|
||||
\newcommand{\stitle}{: L\"osungen}
|
||||
\else
|
||||
\newcommand{\stitle}{}
|
||||
\fi
|
||||
\header{{\bfseries\large \"Ubung 6\stitle}}{{\bfseries\large Statistik}}{{\bfseries\large 27. Oktober, 2015}}
|
||||
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
|
||||
jan.benda@uni-tuebingen.de}
|
||||
\runningfooter{}{\thepage}{}
|
||||
|
||||
\setlength{\baselineskip}{15pt}
|
||||
\setlength{\parindent}{0.0cm}
|
||||
\setlength{\parskip}{0.3cm}
|
||||
\renewcommand{\baselinestretch}{1.15}
|
||||
|
||||
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{listings}
|
||||
\lstset{
|
||||
language=Matlab,
|
||||
basicstyle=\ttfamily\footnotesize,
|
||||
numbers=left,
|
||||
numberstyle=\tiny,
|
||||
title=\lstname,
|
||||
showstringspaces=false,
|
||||
commentstyle=\itshape\color{darkgray},
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
columns=flexible,
|
||||
frame=single,
|
||||
xleftmargin=1em,
|
||||
xrightmargin=1em,
|
||||
aboveskip=10pt
|
||||
}
|
||||
|
||||
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{bm}
|
||||
\usepackage{dsfont}
|
||||
\newcommand{\naZ}{\mathds{N}}
|
||||
\newcommand{\gaZ}{\mathds{Z}}
|
||||
\newcommand{\raZ}{\mathds{Q}}
|
||||
\newcommand{\reZ}{\mathds{R}}
|
||||
\newcommand{\reZp}{\mathds{R^+}}
|
||||
\newcommand{\reZpN}{\mathds{R^+_0}}
|
||||
\newcommand{\koZ}{\mathds{C}}
|
||||
|
||||
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newcommand{\continue}{\ifprintanswers%
|
||||
\else
|
||||
\vfill\hspace*{\fill}$\rightarrow$\newpage%
|
||||
\fi}
|
||||
\newcommand{\continuepage}{\ifprintanswers%
|
||||
\newpage
|
||||
\else
|
||||
\vfill\hspace*{\fill}$\rightarrow$\newpage%
|
||||
\fi}
|
||||
\newcommand{\newsolutionpage}{\ifprintanswers%
|
||||
\newpage%
|
||||
\else
|
||||
\fi}
|
||||
|
||||
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newcommand{\qt}[1]{\textbf{#1}\\}
|
||||
\newcommand{\pref}[1]{(\ref{#1})}
|
||||
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
|
||||
\newcommand{\code}[1]{\texttt{#1}}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{document}
|
||||
|
||||
\input{instructions}
|
||||
|
||||
|
||||
\begin{questions}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\question \qt{Homogeneous Poisson process}
|
||||
We use the Poisson process to generate spike trains on which we can test and imrpove some
|
||||
standard analysis functions.
|
||||
|
||||
A homogeneous Poisson process of rate $\lambda$ (measured in Hertz) is a point process
|
||||
where the probability of an event is independent of time $t$ and independent of previous events.
|
||||
The probability $P$ of an event within a bin of width $\Delta t$ is
|
||||
\[ P = \lambda \cdot \Delta t \]
|
||||
for sufficiently small $\Delta t$.
|
||||
\begin{parts}
|
||||
|
||||
\part Write a function that generates $n$ homogeneous Poisson spike trains of a given duration $T_{max}$
|
||||
with rate $\lambda$.
|
||||
\begin{solution}
|
||||
\lstinputlisting{hompoissonspikes.m}
|
||||
\end{solution}
|
||||
|
||||
\part Using this function, generate a few trials and display them in a raster plot.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/spikeraster.m}
|
||||
\begin{lstlisting}
|
||||
spikes = hompoissonspikes( 10, 100.0, 0.5 );
|
||||
spikeraster( spikes )
|
||||
\end{lstlisting}
|
||||
\mbox{}\\[-3ex]
|
||||
\colorbox{white}{\includegraphics[width=0.7\textwidth]{poissonraster100hz}}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that extracts a single vector of interspike intervals
|
||||
from the spike times returned by the first function.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isis.m}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that plots the interspike-interval histogram
|
||||
from a vector of interspike intervals. The function should also
|
||||
compute the mean, the standard deviation, and the CV of the intervals
|
||||
and display the values in the plot.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isihist.m}
|
||||
\end{solution}
|
||||
|
||||
\part Compute histograms for Poisson spike trains with rate
|
||||
$\lambda=100$\,Hz. Play around with $T_{max}$ and $n$ and the bin width
|
||||
(start with 1\,ms) of the histogram.
|
||||
How many
|
||||
interspike intervals do you approximately need to get a ``nice''
|
||||
histogram? How long do you need to record from the neuron?
|
||||
\begin{solution}
|
||||
About 5000 intervals for 25 bins. This corresponds to a $5000 / 100\,\hertz = 50\,\second$ recording
|
||||
of a neuron firing with 100\,\hertz.
|
||||
\end{solution}
|
||||
|
||||
\part Compare the histogram with the true distribution of intervals $T$ of the Poisson process
|
||||
\[ p(T) = \lambda e^{-\lambda T} \]
|
||||
for various rates $\lambda$.
|
||||
\begin{solution}
|
||||
\lstinputlisting{hompoissonisih.m}
|
||||
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissonisih100hz}}
|
||||
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissonisih20hz}}
|
||||
\end{solution}
|
||||
|
||||
\part What happens if you make the bin width of the histogram smaller than $\Delta t$
|
||||
used for generating the Poisson spikes?
|
||||
\begin{solution}
|
||||
The bins between the discretization have zero entries. Therefore
|
||||
the other ones become higher than they should be.
|
||||
\end{solution}
|
||||
|
||||
\part Plot the mean interspike interval, the corresponding standard deviation, and the CV
|
||||
as a function of the rate $\lambda$ of the Poisson process.
|
||||
Compare the ../code with the theoretical expectations for the dependence on $\lambda$.
|
||||
\begin{solution}
|
||||
\lstinputlisting{hompoissonisistats.m}
|
||||
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonisistats}}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that computes serial correlations for the interspike intervals
|
||||
for a range of lags.
|
||||
The serial correlations $\rho_k$ at lag $k$ are defined as
|
||||
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i - \langle T \rangle) \rangle}{\langle (T_i - \langle T \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm var}(T_i)} \]
|
||||
Use this function to show that interspike intervals of Poisson spikes are independent.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isiserialcorr.m}
|
||||
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonserial100hz}}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that generates from spike times
|
||||
a histogram of spike counts in a count window of given duration $W$.
|
||||
The function should also plot the Poisson distribution
|
||||
\[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \]
|
||||
for the rate $\lambda$ determined from the spike trains.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/counthist.m}
|
||||
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}}
|
||||
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms}}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that computes mean count, variance of count and the corresponding Fano factor
|
||||
for a range of count window durations. The function should generate tow plots: one plotting
|
||||
the count variance against the mean, the other one the Fano factor as a function of the window duration.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/fano.m}
|
||||
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonfano100hz}}
|
||||
\end{solution}
|
||||
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
BIN
pointprocesses/exercises/serialcorr.pdf
Normal file
BIN
pointprocesses/exercises/serialcorr.pdf
Normal file
Binary file not shown.
BIN
pointprocesses/exercises/spikeraster.pdf
Normal file
BIN
pointprocesses/exercises/spikeraster.pdf
Normal file
Binary file not shown.
Reference in New Issue
Block a user