[spectral] note on how to compute the transfer function
This commit is contained in:
parent
102ff07969
commit
de7027f406
@ -28,6 +28,72 @@ Correlation theorem:
|
||||
\[ {\cal F}\{Corr(x,y)\} = X(f)Y^*(f) = S_{x,y} \]
|
||||
|
||||
\section{Transfer function}
|
||||
The complex valued transfer function of a linear, noiseless system
|
||||
relating stimulus $s(t)$ and response $r(t)$ is
|
||||
\begin{equation}
|
||||
\label{transfer}
|
||||
H(\omega) = \frac{R(\omega)}{S(\omega)}
|
||||
\end{equation}
|
||||
where $S(\omega)$ and $R(\omega)$ are the Fourier transformed stimulus
|
||||
and response, respectively. By means of the transfer function, the
|
||||
response of the system to a stimulus can be predicted according to
|
||||
\begin{equation}
|
||||
R(\omega) = H(\omega) S(\omega)
|
||||
\end{equation}
|
||||
|
||||
Now, if the system is noisy, then the transfer function can only
|
||||
predict the mean response $\langle R \rangle_n$, averaged over the
|
||||
noise, i.e. averaged over responses evoked by several presentations
|
||||
of the same, frozen stimulus:
|
||||
\begin{equation}
|
||||
\langle R(\omega) \rangle_n = H(\omega) S(\omega)
|
||||
\end{equation}
|
||||
|
||||
Both sides of this equation can be multiplied by the complex conjugate
|
||||
stimulus $S^*(\omega)$. Since the stimulus is always the same,
|
||||
$S^*(\omega)$ can be pulled into the average over the noise and we get
|
||||
\begin{equation}
|
||||
\langle R(\omega)S^*(\omega) \rangle_n = H(\omega) S(\omega)S^*(\omega)
|
||||
\end{equation}
|
||||
The right hand side can also be averaged over the noise, but it makes
|
||||
no difference, because neither $S(\omega)$ nore $H(\omega)$ depend on
|
||||
the noise. In addition, we can average both sides over different
|
||||
realizations of the stimulus. We denote this average by $\langle \cdot
|
||||
\rangle_s$. Because the transfer function does note depend on the
|
||||
stimulus it can be pulled out of the stimulus average and we get
|
||||
\begin{equation}
|
||||
\langle\langle R(\omega)S^*(\omega) \rangle_n\rangle_s = H(\omega) \langle \langle S(\omega)S^*(\omega) \rangle_n \rangle_s
|
||||
\end{equation}
|
||||
|
||||
Finally, let's solve for the transfer function and denote both
|
||||
averages by $\langle \cdot \rangle$:
|
||||
\begin{equation}
|
||||
\label{transfercsd}
|
||||
H(\omega) = \frac{\langle R(\omega)S^*(\omega) \rangle}{\langle S(\omega)S^*(\omega) \rangle}
|
||||
\end{equation}
|
||||
The transfer function of a noisy system is estimated by dividing the
|
||||
cross spectrum by the power spectrum of the stimulus.
|
||||
|
||||
Computing the squared gain like this
|
||||
\begin{equation}
|
||||
|H(\omega)|^2 = \frac{R(\omega)R^*(\omega)}{S(\omega)S^*(\omega)}
|
||||
\end{equation}
|
||||
is not possible, it again requires to average over the noise
|
||||
\begin{equation}
|
||||
|H(\omega)|^2 = \frac{\langle R(\omega)R^*(\omega) \rangle_n}{S(\omega)S^*(\omega)}
|
||||
\end{equation}
|
||||
Subsequent averaging over stimuli leads to
|
||||
\begin{equation}
|
||||
|H(\omega)|^2 = \left\langle\frac{\langle R(\omega)R^*(\omega) \rangle_n}{S(\omega)S^*(\omega)} \right\rangle_s
|
||||
\end{equation}
|
||||
which is \emph{not} just the power spectrum $\langle R R^* \rangle$ of
|
||||
the response devided by the power spectrum $\langle S S^* \rangle$ of
|
||||
the stimulus
|
||||
\begin{equation}
|
||||
|H(\omega)|^2 \ne \frac{\langle\langle R(\omega)R^*(\omega) \rangle_n\rangle_s}{\langle S(\omega)S^*(\omega)\rangle_s}
|
||||
\end{equation}
|
||||
The gain can not be computed by simply dividing the response spectrum
|
||||
by the stimulus spectrum.
|
||||
|
||||
\section{Coherence function}
|
||||
|
||||
|
Reference in New Issue
Block a user