Some corrections
This commit is contained in:
parent
ef9827cc73
commit
befdbfb518
@ -21,7 +21,7 @@
|
||||
|
||||
%%%%% section style %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage[sf,bf,it,big,clearempty]{titlesec}
|
||||
\setcounter{secnumdepth}{-1}
|
||||
\setcounter{secnumdepth}{1}
|
||||
|
||||
|
||||
%%%%% units %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
@ -144,7 +144,7 @@
|
||||
|
||||
|
||||
%%%%% equation references %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newcommand{\eqref}[1]{(\ref{#1})}
|
||||
%\newcommand{\eqref}[1]{(\ref{#1})}
|
||||
\newcommand{\eqn}{Eq.}
|
||||
\newcommand{\Eqn}{Eq.}
|
||||
\newcommand{\eqns}{Eqs.}
|
||||
@ -229,7 +229,7 @@
|
||||
\chapter{\tr{Descriptive statistics}{Deskriptive Statistik}}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Statistics of real-valued data}
|
||||
%\section{Statistics of real-valued data}
|
||||
|
||||
\begin{itemize}
|
||||
\item Location, central tendency
|
||||
@ -259,7 +259,7 @@
|
||||
\end{itemize}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Median, Quartile, Percentile}
|
||||
\section{\tr{Median, quartile, etc.}{Median, Quartil, etc.}}
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=1\textwidth]{median}
|
||||
@ -307,7 +307,7 @@
|
||||
{Schreibe eine Funktion, die das erste, zweite und dritte Quartil als Vektor zur\"uckgibt.}
|
||||
\end{exercise}
|
||||
|
||||
\subsection{Histogram}
|
||||
\section{\tr{Histogram}{Histogramm}}
|
||||
|
||||
Histogramme z\"ahlen die H\"aufigkeit $n_i$ des Auftretens von
|
||||
$N=\sum_{i=1}^M n_i$ Messwerten in $M$ Messbereichsklassen $i$ (Bins).
|
||||
@ -349,7 +349,7 @@ des Auftretens der Gr\"o{\ss}e $x_i$ in der $i$-ten Klasse an
|
||||
\[ P_i = \frac{n_i}{N} = \frac{n_i}{\sum_{i=1}^M n_i} \; . \]
|
||||
|
||||
|
||||
\subsection{Probability density function}
|
||||
\section{\tr{Probability density function}{Wahrscheinlichkeitsdichte}}
|
||||
|
||||
Meistens haben wir es jedoch mit reellen Messgr\"o{\ss}en zu tun.
|
||||
|
||||
@ -371,11 +371,14 @@ Meistens haben wir es jedoch mit reellen Messgr\"o{\ss}en zu tun.
|
||||
unterschiedliche Klassenbreiten vergleichbar.}}
|
||||
\end{figure}
|
||||
|
||||
Histogramme von reellen Messwerten m\"ussen auf das Integral 1 normiert werden, so dass
|
||||
das Integral (nicht die Summe) \"uber das Histogramm eins ergibt. Das Integral
|
||||
ist die Fl\"ache des Histograms. Diese setzt sich zusammen aus der Fl\"ache der einzelnen
|
||||
Histogrammbalken. Diese haben die H\"ohe $n_i$ und die Breite $\Delta x$. Die Gesamtfl\"ache
|
||||
$A$ des Histogramms ist also
|
||||
Histogramme von reellen Messwerten m\"ussen auf das Integral 1
|
||||
normiert werden, so dass das Integral (nicht die Summe) \"uber das
|
||||
Histogramm eins ergibt --- denn die Wahrscheinlichkeit, dass
|
||||
irgendeiner der Messwerte auftritt mu{\ss} Eins sein. Das Integral ist
|
||||
die Fl\"ache des Histogramms. Diese setzt sich zusammen aus der
|
||||
Fl\"ache der einzelnen Histogrammbalken. Diese haben die H\"ohe $n_i$
|
||||
und die Breite $\Delta x$. Die Gesamtfl\"ache $A$ des Histogramms ist
|
||||
also
|
||||
\[ A = \sum_{i=1}^N ( n_i \cdot \Delta x ) = \Delta x \sum_{i=1}^N n_i \]
|
||||
und das normierte Histogramm hat die H\"ohe
|
||||
\[ p(x_i) = \frac{n_i}{\Delta x \sum_{i=1}^N n_i} \]
|
||||
@ -421,16 +424,17 @@ spricht von einer Wahrscheinlichkeitsdichte.
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Korrelation}
|
||||
\section{\tr{Correlations}{Korrelationen}}
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=1\textwidth]{correlation}
|
||||
\caption{\label{correlationfig} Korrelationen zwischen zwei Datens\"atzen $x$ und $y$.}
|
||||
\end{figure}
|
||||
|
||||
Bisher haben wir Eigenschaften einer einzelnen Me{\ss}gr\"o{\ss}e angeschaut.
|
||||
Bei mehreren Me{\ss}gr\"o{\ss}en, kann nach Abh\"angigkeiten gefragt werden.
|
||||
Der Korrelationskoeffizient
|
||||
Bisher haben wir Eigenschaften einer einzelnen Me{\ss}gr\"o{\ss}e
|
||||
angeschaut. Bei mehreren Me{\ss}gr\"o{\ss}en, kann nach
|
||||
Abh\"angigkeiten zwischen den beiden Gr\"o{\ss}en gefragt werden. Der
|
||||
Korrelationskoeffizient
|
||||
\[ r_{x,y} = \frac{Cov(x,y)}{\sigma_x \sigma_y} = \frac{\langle
|
||||
(x-\langle x \rangle)(y-\langle y \rangle) \rangle}{\sqrt{\langle
|
||||
(x-\langle x \rangle)^2} \rangle \sqrt{\langle (y-\langle y
|
||||
@ -452,9 +456,9 @@ Korrelationskoeffizienten nahe 0 (\figrefb{correlationfig}).
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Data types}
|
||||
\section{Data types}
|
||||
|
||||
\subsubsection{Nominal scale}
|
||||
\subsection{Nominal scale}
|
||||
\begin{itemize}
|
||||
\item Binary
|
||||
\begin{itemize}
|
||||
@ -475,7 +479,7 @@ Korrelationskoeffizienten nahe 0 (\figrefb{correlationfig}).
|
||||
\item Statistics: mode, i.e. the most common item
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Ordinal scale}
|
||||
\subsection{Ordinal scale}
|
||||
\begin{itemize}
|
||||
\item Like nominal scale, but with an order
|
||||
\item Examples: ranks, ratings
|
||||
@ -489,7 +493,7 @@ Korrelationskoeffizienten nahe 0 (\figrefb{correlationfig}).
|
||||
\item Statistics: mode, median
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Interval scale}
|
||||
\subsection{Interval scale}
|
||||
\begin{itemize}
|
||||
\item Quantitative/metric values
|
||||
\item Reasonable measure of distance between values, but no absolute zero
|
||||
@ -505,7 +509,7 @@ Korrelationskoeffizienten nahe 0 (\figrefb{correlationfig}).
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Absolute/ratio scale}
|
||||
\subsection{Absolute/ratio scale}
|
||||
\begin{itemize}
|
||||
\item Like interval scale, but with absolute origin/zero
|
||||
\item Examples:
|
||||
@ -524,7 +528,7 @@ Korrelationskoeffizienten nahe 0 (\figrefb{correlationfig}).
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Data types}
|
||||
\subsection{Data types}
|
||||
\begin{itemize}
|
||||
\item Data type selects
|
||||
\begin{itemize}
|
||||
@ -539,7 +543,7 @@ Korrelationskoeffizienten nahe 0 (\figrefb{correlationfig}).
|
||||
categories ``small/medium/large'' (ordinal scale)
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Examples from neuroscience}
|
||||
\subsection{Examples from neuroscience}
|
||||
\begin{itemize}
|
||||
\item {\bf absolute:}
|
||||
\begin{itemize}
|
||||
@ -615,7 +619,7 @@ aus der Stichprobe. Das hat mehrere Vorteile:
|
||||
|
||||
\section{Bootstrap des Standardfehlers}
|
||||
|
||||
Beim Bootstrap erzeugen wir durch resampling neue Stichproben und
|
||||
Beim Bootstrap erzeugen wir durch Resampling neue Stichproben und
|
||||
benutzen diese um die Stichprobenverteilung einer Statistik zu
|
||||
berechnen. Die Bootstrap Stichproben haben jeweils den gleichen Umfang
|
||||
wie die urspr\"unglich gemessene Stichprobe und werden durch Ziehen
|
||||
@ -639,7 +643,7 @@ Stichprobe vorkommen.
|
||||
\end{document}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Statistics}
|
||||
\section{Statistics}
|
||||
What is "a statistic"? % dt. Sch\"atzfunktion
|
||||
\begin{definition}[statistic]
|
||||
A statistic (singular) is a single measure of some attribute of a
|
||||
|
Reference in New Issue
Block a user