This commit is contained in:
Jan Grewe 2020-12-20 13:52:08 +01:00
commit bb2b07818b
137 changed files with 2233 additions and 2432 deletions

View File

@ -3,7 +3,7 @@ BASENAME=scientificcomputing-script
SUBDIRS=programming debugging plotting codestyle statistics bootstrap regression likelihood pointprocesses designpattern
SUBTEXS=$(foreach subd, $(SUBDIRS), $(subd)/lecture/$(subd).tex)
all : script chapters
all : plots chapters index script exercises
chapters :
for sd in $(SUBDIRS); do $(MAKE) -C $$sd/lecture chapter; done
@ -37,6 +37,11 @@ watchpdf :
watchscript :
while true; do ! make -s -q script && make script; sleep 0.5; done
exercises:
for sd in $(SUBDIRS); do if test -d $$sd/exercises; then $(MAKE) -C $$sd/exercises pdf; fi; done
cleanplots:
for sd in $(SUBDIRS); do $(MAKE) -C $$sd/lecture cleanplots; done
@ -46,6 +51,7 @@ cleantex:
clean : cleantex
for sd in $(SUBDIRS); do $(MAKE) -C $$sd/lecture clean; done
for sd in $(SUBDIRS); do if test -d $$sd/exercises; then $(MAKE) -C $$sd/exercises clean; fi; done
cleanall : clean
rm -f $(BASENAME).pdf

View File

@ -1,6 +1,20 @@
Fonts for matplotlib
--------------------
Install Humor Sans font
```
sudo apt install fonts-humor-sans
```
Clear matplotlib font cache:
```
cd ~/.cache/matplotlib/
rm -r *
```
Older problems
--------------
Make sure the right fonts are installed:
```
sudo apt-get install ttf-lyx2.0

View File

@ -1,24 +1,25 @@
nsamples = 100;
nresamples = 1000;
% draw a SRS (simple random sample, "Stichprobe") from the population:
x = randn( 1, nsamples );
fprintf('%-30s %-5s %-5s %-5s\n', '', 'mean', 'stdev', 'sem' )
fprintf('%30s %5.2f %5.2f %5.2f\n', 'single SRS', mean( x ), std( x ), std( x )/sqrt(nsamples) )
% draw a simple random sample ("Stichprobe") from the population:
x = randn(1, nsamples);
fprintf('%-30s %-5s %-5s %-5s\n', '', 'mean', 'stdev', 'sem')
fprintf('%30s %5.2f %5.2f %5.2f\n', 'single SRS', mean(x), std(x), std(x)/sqrt(nsamples))
% bootstrap the mean:
mus = zeros(nresamples,1); % vector for storing the means
for i = 1:nresamples % loop for generating the bootstraps
mus = zeros(nresamples,1); % vector for storing the means
for i = 1:nresamples % loop for generating the bootstraps
inx = randi(nsamples, 1, nsamples); % range, 1D-vector, number
xr = x(inx); % resample the original SRS
mus(i) = mean(xr); % compute statistic of the resampled SRS
xr = x(inx); % resample the original SRS
mus(i) = mean(xr); % compute statistic of the resampled SRS
end
fprintf('%30s %5.2f %5.2f -\n', 'bootstrapped distribution', mean( mus ), std( mus ) )
fprintf('%30s %5.2f %5.2f -\n', 'bootstrapped distribution', mean(mus), std(mus))
% many SRS (we can do that with the random number generator, but not in real life!):
musrs = zeros(nresamples,1); % vector for the means of each SRS
% many SRS (we can do that with the random number generator,
% but not in real life!):
musrs = zeros(nresamples,1); % vector for the means of each SRS
for i = 1:nresamples
x = randn( 1, nsamples ); % draw a new SRS
musrs(i) = mean( x ); % compute its mean
x = randn(1, nsamples); % draw a new SRS
musrs(i) = mean(x); % compute its mean
end
fprintf('%30s %5.2f %5.2f -\n', 'sampling distribution', mean( musrs ), std( musrs ) )
fprintf('%30s %5.2f %5.2f -\n', 'sampling distribution', mean(musrs), std(musrs))

View File

@ -1,27 +1,27 @@
% generate correlated data:
n=200;
a=0.2;
n = 200;
a = 0.2;
x = randn(n, 1);
y = randn(n, 1) + a*x;
% correlation coefficient:
rd = corr(x, y);
fprintf('correlation coefficient of data r = %.2f\n', rd );
fprintf('correlation coefficient of data r = %.2f\n', rd);
% distribution of null hypothesis by permutation:
nperm = 1000;
rs = zeros(nperm,1);
for i=1:nperm
xr=x(randperm(length(x))); % shuffle x
yr=y(randperm(length(y))); % shuffle y
for i = 1:nperm
xr = x(randperm(length(x))); % shuffle x
yr = y(randperm(length(y))); % shuffle y
rs(i) = corr(xr, yr);
end
[h,b] = hist(rs, 20 );
h = h/sum(h)/(b(2)-b(1)); % normalization
[h, b] = hist(rs, 20);
h = h/sum(h)/(b(2)-b(1)); % normalization
% significance:
rq = quantile(rs, 0.95);
fprintf('correlation coefficient of null hypothesis at 5%% significance = %.2f\n', rq );
fprintf('correlation coefficient of null hypothesis at 5%% significance = %.2f\n', rq);
if rd >= rq
fprintf('--> correlation r=%.2f is significant\n', rd);
else
@ -32,7 +32,7 @@ end
bar(b, h, 'facecolor', 'b');
hold on;
bar(b(b>=rq), h(b>=rq), 'facecolor', 'r');
plot( [rd rd], [0 4], 'r', 'linewidth', 2 );
plot([rd rd], [0 4], 'r', 'linewidth', 2);
xlabel('Correlation coefficient');
ylabel('Probability density of H0');
hold off;

View File

@ -0,0 +1,40 @@
% generate two data sets:
n = 200;
d = 0.2;
x = randn(n, 1);
y = randn(n, 1) + d;
% difference of sample means:
md = mean(y) - mean(x);
fprintf('difference of means of data d = %.2f\n', md);
% distribution of null hypothesis by permutation:
nperm = 1000;
xy = [x; y]; % x and y data in one column vector
ds = zeros(nperm,1);
for i = 1:nperm
xyr = xy(randperm(length(xy))); % shuffle data
xr = xyr(1:length(x)); % random x-data
yr = xyr(length(x)+1:end); % random y-data
ds(i) = mean(yr) - mean(xr); % difference of means
end
[h, b] = hist(ds, 20);
h = h/sum(h)/(b(2)-b(1)); % normalization
% significance:
dq = quantile(ds, 0.95);
fprintf('difference of means of null hypothesis at 5%% significance = %.2f\n', dq);
if md >= dq
fprintf('--> difference of means d=%.2f is significant\n', md);
else
fprintf('--> d=%.2f is not a significant difference of means\n', md);
end
% plot:
bar(b, h, 'facecolor', 'b');
hold on;
bar(b(b>=dq), h(b>=dq), 'facecolor', 'r');
plot([md md], [0 4], 'r', 'linewidth', 2);
xlabel('Difference of means');
ylabel('Probability density of H0');
hold off;

View File

@ -0,0 +1,4 @@
>> meandiffsignificance
difference of means of data d = 0.18
difference of means of null hypothesis at 5% significance = 0.17
--> difference of means d=0.18 is significant

View File

@ -1,34 +1,3 @@
TEXFILES=$(wildcard exercises??.tex)
EXERCISES=$(TEXFILES:.tex=.pdf)
SOLUTIONS=$(EXERCISES:exercises%=solutions%)
TEXFILES=$(wildcard resampling-?.tex)
.PHONY: pdf exercises solutions watch watchexercises watchsolutions clean
pdf : $(SOLUTIONS) $(EXERCISES)
exercises : $(EXERCISES)
solutions : $(SOLUTIONS)
$(SOLUTIONS) : solutions%.pdf : exercises%.tex instructions.tex
{ echo "\\documentclass[answers,12pt,a4paper,pdftex]{exam}"; sed -e '1d' $<; } > $(patsubst %.pdf,%.tex,$@)
pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) || true
rm $(patsubst %.pdf,%,$@).[!p]*
$(EXERCISES) : %.pdf : %.tex instructions.tex
pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $< || true
watch :
while true; do ! make -q pdf && make pdf; sleep 0.5; done
watchexercises :
while true; do ! make -q exercises && make exercises; sleep 0.5; done
watchsolutions :
while true; do ! make -q solutions && make solutions; sleep 0.5; done
clean :
rm -f *~ *.aux *.log *.out
cleanup : clean
rm -f $(SOLUTIONS) $(EXERCISES)
include ../../exercises.mk

View File

@ -10,7 +10,7 @@ function [bootsem, mu] = bootstrapmean(x, resample)
for i = 1:resample
% resample:
xr = x(randi(nsamples, nsamples, 1));
% compute statistics on sample:
% compute statistics of resampled sample:
mu(i) = mean(xr);
end
bootsem = std(mu);

View File

@ -1,18 +1,18 @@
%% (a) bootstrap:
nperm = 1000;
rb = zeros(nperm,1);
rb = zeros(nperm, 1);
for i=1:nperm
% indices for resampling the data:
inx = randi(length(x), length(x), 1);
% resampled data pairs:
xb=x(inx);
yb=y(inx);
xb = x(inx);
yb = y(inx);
rb(i) = corr(xb, yb);
end
%% (b) pdf of the correlation coefficients:
[hb,bb] = hist(rb, 20);
hb = hb/sum(hb)/(bb(2)-bb(1)); % normalization
[hb, bb] = hist(rb, 20);
hb = hb/sum(hb)/(bb(2)-bb(1)); % normalization
%% (c) significance:
rbq = quantile(rb, 0.05);
@ -25,8 +25,8 @@ end
%% plot:
hold on;
bar(b, h, 'facecolor', [0.5 0.5 0.5]);
bar(bb, hb, 'facecolor', 'b');
bar(b, h, 'facecolor', [0.5 0.5 0.5]); % permuation test
bar(bb, hb, 'facecolor', 'b'); % bootstrap
bar(bb(bb<=rbq), hb(bb<=rbq), 'facecolor', 'r');
plot([rd rd], [0 4], 'r', 'linewidth', 2);
xlim([-0.25 0.75])

View File

@ -1,4 +1,4 @@
%% (a) generate correlated data
%% (a) generate correlated data:
n = 1000;
a = 0.2;
x = randn(n, 1);
@ -8,7 +8,7 @@ y = randn(n, 1) + a*x;
subplot(1, 2, 1);
plot(x, a*x, 'r', 'linewidth', 3);
hold on
%scatter(x, y ); % either scatter ...
%scatter(x, y ); % either scatter ...
plot(x, y, 'o', 'markersize', 2 ); % ... or plot - same plot.
xlim([-4 4])
ylim([-4 4])
@ -20,20 +20,20 @@ hold off
%c = corrcoef(x, y); % returns correlation matrix
%rd = c(1, 2);
rd = corr(x, y);
fprintf('correlation coefficient = %.2f\n', rd );
fprintf('correlation coefficient = %.2f\n', rd);
%% (e) permutation:
nperm = 1000;
rs = zeros(nperm,1);
for i=1:nperm
xr=x(randperm(length(x))); % shuffle x
yr=y(randperm(length(y))); % shuffle y
rs = zeros(nperm, 1);
for i = 1:nperm
xr = x(randperm(length(x))); % shuffle x
yr = y(randperm(length(y))); % shuffle y
rs(i) = corr(xr, yr);
end
%% (g) pdf of the correlation coefficients:
[h,b] = hist(rs, 20);
h = h/sum(h)/(b(2)-b(1)); % normalization
[h, b] = hist(rs, 20);
h = h/sum(h)/(b(2)-b(1)); % normalization
%% (h) significance:
rq = quantile(rs, 0.95);
@ -49,7 +49,7 @@ subplot(1, 2, 2)
hold on;
bar(b, h, 'facecolor', 'b');
bar(b(b>=rq), h(b>=rq), 'facecolor', 'r');
plot( [rd rd], [0 4], 'r', 'linewidth', 2);
plot([rd rd], [0 4], 'r', 'linewidth', 2);
xlim([-0.25 0.25])
xlabel('Correlation coefficient');
ylabel('Probability density of H0');

View File

@ -1,205 +0,0 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[english]{babel}
\usepackage{pslatex}
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: Solutions}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large Exercise 9\stitle}}{{\bfseries\large Bootstrap}}{{\bfseries\large December 9th, 2019}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{dsfont}
\newcommand{\naZ}{\mathds{N}}
\newcommand{\gaZ}{\mathds{Z}}
\newcommand{\raZ}{\mathds{Q}}
\newcommand{\reZ}{\mathds{R}}
\newcommand{\reZp}{\mathds{R^+}}
\newcommand{\reZpN}{\mathds{R^+_0}}
\newcommand{\koZ}{\mathds{C}}
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\continue}{\ifprintanswers%
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\continuepage}{\ifprintanswers%
\newpage
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\newsolutionpage}{\ifprintanswers%
\newpage%
\else
\fi}
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qt}[1]{\textbf{#1}\\}
\newcommand{\pref}[1]{(\ref{#1})}
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{instructions}
\begin{questions}
\question \qt{Bootstrap the standard error of the mean}
We want to compute the standard error of the mean of a data set by
means of the bootstrap method and compare the result with the formula
``standard deviation divided by the square-root of $n$''.
\begin{parts}
\part Download the file \code{thymusglandweights.dat} from Ilias.
This is a data set of the weights of the thymus glands of 14-day old chicken embryos
measured in milligram.
\part Load the data into Matlab (\code{load} function).
\part Compute histogram, mean, and standard error of the mean of the first 80 data points.
\part Compute the standard error of the mean of the first 80 data
points by bootstrapping the data 500 times. Write a function that
bootstraps the standard error of the mean of a given data set. The
function should also return a vector with the bootstrapped means.
\part Compute the 95\,\% confidence interval for the mean from the
bootstrap distribution (\code{quantile()} function) --- the
interval that contains the true mean with 95\,\% probability.
\part Use the whole data set and the bootstrap method for computing
the dependence of the standard error of the mean from the sample
size $n$.
\part Compare your result with the formula for the standard error
$\sigma/\sqrt{n}$.
\end{parts}
\begin{solution}
\lstinputlisting{bootstrapmean.m}
\lstinputlisting{bootstraptymus.m}
\includegraphics[width=0.5\textwidth]{bootstraptymus-datahist}
\includegraphics[width=0.5\textwidth]{bootstraptymus-meanhist}
\includegraphics[width=0.5\textwidth]{bootstraptymus-samples}
\end{solution}
\question \qt{Student t-distribution}
The distribution of Student's t, $t=\bar x/(\sigma_x/\sqrt{n})$, the
estimated mean $\bar x$ of a data set of size $n$ divided by the
estimated standard error of the mean $\sigma_x/\sqrt{n}$, where
$\sigma_x$ is the estimated standard deviation, is not a normal
distribution but a Student-t distribution. We want to compute the
Student-t distribution and compare it with the normal distribution.
\begin{parts}
\part Generate 100000 normally distributed random numbers.
\part Draw from these data 1000 samples of size $n=3$, 5, 10, and
50. For each sample size $n$ ...
\part ... compute the mean $\bar x$ of the samples and plot the
probability density of these means.
\part ... compare the resulting probability densities with corresponding
normal distributions.
\part ... compute Student's $t=\bar x/(\sigma_x/\sqrt{n})$ and compare its
distribution with the normal distribution with standard deviation of
one. Is $t$ normally distributed? Under which conditions is $t$
normally distributed?
\end{parts}
\newsolutionpage
\begin{solution}
\lstinputlisting{tdistribution.m}
\includegraphics[width=1\textwidth]{tdistribution-n03}\\
\includegraphics[width=1\textwidth]{tdistribution-n05}\\
\includegraphics[width=1\textwidth]{tdistribution-n10}\\
\includegraphics[width=1\textwidth]{tdistribution-n50}
\end{solution}
\continue
\question \qt{Permutation test} \label{permutationtest}
We want to compute the significance of a correlation by means of a permutation test.
\begin{parts}
\part \label{permutationtestdata} Generate 1000 correlated pairs
$x$, $y$ of random numbers according to:
\begin{verbatim}
n = 1000
a = 0.2;
x = randn(n, 1);
y = randn(n, 1) + a*x;
\end{verbatim}
\part Generate a scatter plot of the two variables.
\part Why is $y$ correlated with $x$?
\part Compute the correlation coefficient between $x$ and $y$.
\part What do you need to do in order to destroy the correlations between the $x$-$y$ pairs?
\part Do exactly this 1000 times and compute each time the correlation coefficient.
\part Compute and plot the probability density of these correlation
coefficients.
\part Is the correlation of the original data set significant?
\part What does ``significance of the correlation'' mean?
% \part Vary the sample size \code{n} and compute in the same way the
% significance of the correlation.
\end{parts}
\begin{solution}
\lstinputlisting{correlationsignificance.m}
\includegraphics[width=1\textwidth]{correlationsignificance}
\end{solution}
\question \qt{Bootstrap the correlation coefficient}
The permutation test generates the distribution of the null hypothesis
of uncorrelated data and we check whether the correlation coefficient
of the data differs significantly from this
distribution. Alternatively we can bootstrap the data while keeping
the pairs and determine the confidence interval of the correlation
coefficient of the data. If this differs significantly from a
correlation coefficient of zero we can conclude that the correlation
coefficient of the data indeed quantifies correlated data.
We take the same data set that we have generated in exercise
\ref{permutationtest} (\ref{permutationtestdata}).
\begin{parts}
\part Bootstrap 1000 times the correlation coefficient from the data.
\part Compute and plot the probability density of these correlation
coefficients.
\part Is the correlation of the original data set significant?
\end{parts}
\begin{solution}
\lstinputlisting{correlationbootstrap.m}
\includegraphics[width=1\textwidth]{correlationbootstrap}
\end{solution}
\end{questions}
\end{document}

View File

@ -1,6 +0,0 @@
\vspace*{-7.8ex}
\begin{center}
\textbf{\Large Introduction to Scientific Computing}\\[2.3ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology Lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}

View File

@ -0,0 +1,29 @@
function [md, ds, dq] = meandiffpermutation(x, y, nperm, alpha)
% Permutation test for difference of means of two independent samples.
%
% [md, ds, dq] = meandiffpermutation(x, y, nperm, alpha);
%
% Arguments:
% x: vector with the samples of the x data set.
% y: vector with the samples of the y data set.
% nperm: number of permutations run.
% alpha: significance level.
%
% Returns:
% md: difference of the means
% ds: vector containing the differences of the means of the resampled data sets
% dq: difference of the means at a significance of alpha.
md = mean(x) - mean(y); % measured difference
xy = [x; y]; % merge data sets
% permutations:
ds = zeros(nperm, 1);
for i = 1:nperm
xyr = xy(randperm(length(xy))); % shuffle xy
xr = xyr(1:length(x)); % random x sample
yr = xyr(length(x)+1:end); % random y sample
ds(i) = mean(xr) - mean(yr);
end
% significance:
dq = quantile(ds, 1.0 - alpha);
end

View File

@ -0,0 +1,42 @@
function meandiffplot(x, y, md, ds, dq, k, nrows)
% Plot histogram of data sets and of null hypothesis for differences in mean.
%
% meandiffplot(x, y, md, ds, dq, k, rows);
%
% Arguments:
% x: vector with the samples of the x data set.
% y: vector with the samples of the y data set.
% md: difference of means of the two data sets.
% ds: vector containing the differences of the means of the resampled data sets
% dq: minimum difference of the means considered significant.
% k: current row for the plot panels.
% nrows: number of rows of panels in the figure.
%% (b) plot histograms:
subplot(nrows, 2, k*2-1);
bmin = min([x; y]);
bmax = max([x; y]);
bins = bmin:(bmax-bmin)/20.0:bmax;
[xh, b] = hist(x, bins);
[yh, b] = hist(y, bins);
bar(bins, xh, 'facecolor', 'b')
hold on
bar(bins, yh, 'facecolor', 'r');
xlabel('x and y [mV]')
ylabel('counts')
hold off
%% (f) pdf of the differences:
[h, b] = hist(ds, 20);
h = h/sum(h)/(b(2)-b(1)); % normalization
%% plot:
subplot(nrows, 2, k*2)
bar(b, h, 'facecolor', 'b');
hold on;
bar(b(b>=dq), h(b>=dq), 'facecolor', 'r');
plot([md md], [0 4], 'r', 'linewidth', 2);
xlabel('Difference of means [mV]');
ylabel('pdf of H0');
hold off;
end

View File

@ -0,0 +1,37 @@
n = 200;
mx = -40.0;
nperm = 1000;
alpha = 0.05;
%% (h) repeat for various means of the y-data set:
mys = [-40.1, -40.2, -40.5];
for k=1:length(mys)
%% (a) generate data:
my = mys(k);
x = randn(n, 1) + mx;
y = randn(n, 1) + my;
%% (d), (e) permutation test:
[md, ds, dq] = meandiffpermutation(x, y, nperm, alpha);
%% (c) difference of means:
fprintf('\nmean x = %.1fmV, mean y = %.1fmV\n', mx, my);
fprintf(' difference of means = %.2fmV\n', md);
%% (g) significance:
fprintf(' difference of means at 5%% significance = %.2fmV\n', dq);
if md >= dq
fprintf(' --> measured difference of means is significant\n');
else
fprintf(' --> measured difference of means is not significant\n');
end
%% (b), (f) plot histograms of data and pdf of differences:
meandiffplot(x, y, md, ds, dq, k, length(mys));
subplot(length(mys), 2, k*2-1);
title(sprintf('mx=%.1fmV, my=%.1fmV', mx, my))
end
savefigpdf(gcf, 'meandiffsignificance.pdf', 12, 10);

Binary file not shown.

View File

@ -0,0 +1,116 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\newcommand{\exercisetopic}{Resampling}
\newcommand{\exercisenum}{8}
\newcommand{\exercisedate}{December 14th, 2020}
\input{../../exercisesheader}
\firstpagefooter{Prof. Dr. Jan Benda}{}{jan.benda@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{../../exercisestitle}
\begin{questions}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\question \qt{Read chapter 7 of the script on ``resampling methods''!}\vspace{-3ex}
\question \qt{Permutation test of correlations} \label{correlationtest}
We want to compute the significance of a correlation by means of a permutation test.
\begin{parts}
\part \label{correlationtestdata} Generate 1000 correlated pairs
$x$, $y$ of random numbers according to:
\begin{verbatim}
n = 1000
a = 0.2;
x = randn(n, 1);
y = randn(n, 1) + a*x;
\end{verbatim}
\part Generate a scatter plot of the two variables.
\part Why is $y$ correlated with $x$?
\part Compute the correlation coefficient between $x$ and $y$.
\part What do you need to do in order to destroy the correlations between the $x$-$y$ pairs?
\part Do exactly this 1000 times and compute each time the correlation coefficient.
\part Compute and plot the probability density of these correlation
coefficients.
\part Is the correlation of the original data set significant?
\part What does ``significance of the correlation'' mean?
% \part Vary the sample size \code{n} and compute in the same way the
% significance of the correlation.
\end{parts}
\begin{solution}
\lstinputlisting{correlationsignificance.m}
\includegraphics[width=1\textwidth]{correlationsignificance}
\end{solution}
\newsolutionpage
\question \qt{Bootstrap the correlation coefficient}
The permutation test generates the distribution of the null hypothesis
of uncorrelated data and we check whether the correlation coefficient
of the data differs significantly from this
distribution. Alternatively we can bootstrap the data while keeping
the pairs and determine the confidence interval of the correlation
coefficient of the data. If this differs significantly from a
correlation coefficient of zero we can conclude that the correlation
coefficient of the data indeed quantifies correlated data.
We take the same data set that we have generated in exercise
\ref{correlationtest} (\ref{correlationtestdata}).
\begin{parts}
\part Bootstrap 1000 times the correlation coefficient from the
data, i.e. generate bootstrap data by randomly resampling the
original data pairs with replacement. Use the \code{randi()}
function for generating random indices that you can use to select a
random sample from the original data.
\part Compute and plot the probability density of these correlation
coefficients.
\part Is the correlation of the original data set significant?
\end{parts}
\begin{solution}
\lstinputlisting{correlationbootstrap.m}
\includegraphics[width=1\textwidth]{correlationbootstrap}
\end{solution}
\continue
\question \qt{Permutation test of difference of means}
We want to test whether two data sets come from distributions that
differ in their mean by means of a permutation test.
\begin{parts}
\part Generate two normally distributed data sets $x$ and $y$
containing each $n=200$ samples. Let's assume the $x$ samples are
measurements of the membrane potential of a mammalian photoreceptor
in darkness with a mean of $-40$\,mV and a standard deviation of
1\,mV. The $y$ values are the membrane potentials measured under dim
illumination and come from a distribution with the same standard
deviation and a mean of $-40.5$\,mV. See section 5.2 ``Scaling and
shifting random numbers'' in the script.
\part Plot histograms of the $x$ and $y$ data in a single
plot. Choose appropriate bins.
\part Compute the means of $x$ and $y$ and their difference.
\part The null hypothesis is that the $x$ and $y$ data come from the
same distribution. How can you generate new samples $x_r$ and $y_r$
from the original data that come from the same distribution?
\part Do exactly this 1000 times and compute each time the
difference of the means of the two resampled samples.
\part Compute and plot the probability density of the resulting
distribution of the null hypothesis.
\part Is the difference of the means of the original data sets significant?
\part Repeat this procedure for $y$ samples that are closer or
further apart from the mean of the $x$ data set. For this put the
computations of the permuation test in a function and all the plotting
in another function.
\end{parts}
\begin{solution}
\lstinputlisting{meandiffpermutation.m}
\lstinputlisting{meandiffplot.m}
\lstinputlisting{meandiffsignificance.m}
\includegraphics[width=1\textwidth]{meandiffsignificance}
\end{solution}
\end{questions}
\end{document}

View File

@ -0,0 +1,84 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\newcommand{\exercisetopic}{Resampling}
\newcommand{\exercisenum}{X2}
\newcommand{\exercisedate}{December 14th, 2020}
\input{../../exercisesheader}
\firstpagefooter{Prof. Dr. Jan Benda}{}{jan.benda@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{../../exercisestitle}
\begin{questions}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\question \qt{Read chapter 7 of the script on ``resampling methods''!}\vspace{-3ex}
\question \qt{Bootstrap the standard error of the mean}
We want to compute the standard error of the mean of a data set by
means of the bootstrap method and compare the result with the formula
``standard deviation divided by the square-root of $n$''.
\begin{parts}
\part Download the file \code{thymusglandweights.dat} from Ilias.
This is a data set of the weights of the thymus glands of 14-day old chicken embryos
measured in milligram.
\part Load the data into Matlab (\code{load} function).
\part Compute histogram, mean, and standard error of the mean of the first 80 data points.
\part Compute the standard error of the mean of the first 80 data
points by bootstrapping the data 500 times. Write a function that
bootstraps the standard error of the mean of a given data set. The
function should also return a vector with the bootstrapped means.
\part Compute the 95\,\% confidence interval for the mean from the
bootstrap distribution (\code{quantile()} function) --- the
interval that contains the true mean with 95\,\% probability.
\part Use the whole data set and the bootstrap method for computing
the dependence of the standard error of the mean from the sample
size $n$.
\part Compare your result with the formula for the standard error
$\sigma/\sqrt{n}$.
\end{parts}
\begin{solution}
\lstinputlisting{bootstrapmean.m}
\lstinputlisting{bootstraptymus.m}
\includegraphics[width=0.5\textwidth]{bootstraptymus-datahist}
\includegraphics[width=0.5\textwidth]{bootstraptymus-meanhist}
\includegraphics[width=0.5\textwidth]{bootstraptymus-samples}
\end{solution}
\question \qt{Student t-distribution}
The distribution of Student's t, $t=\bar x/(\sigma_x/\sqrt{n})$, the
estimated mean $\bar x$ of a data set of size $n$ divided by the
estimated standard error of the mean $\sigma_x/\sqrt{n}$, where
$\sigma_x$ is the estimated standard deviation, is not a normal
distribution but a Student-t distribution. We want to compute the
Student-t distribution and compare it with the normal distribution.
\begin{parts}
\part Generate 100000 normally distributed random numbers.
\part Draw from these data 1000 samples of size $n=3$, 5, 10, and
50. For each sample size $n$ ...
\part ... compute the mean $\bar x$ of the samples and plot the
probability density of these means.
\part ... compare the resulting probability densities with corresponding
normal distributions.
\part ... compute Student's $t=\bar x/(\sigma_x/\sqrt{n})$ and compare its
distribution with the normal distribution with standard deviation of
one. Is $t$ normally distributed? Under which conditions is $t$
normally distributed?
\end{parts}
\newsolutionpage
\begin{solution}
\lstinputlisting{tdistribution.m}
\includegraphics[width=1\textwidth]{tdistribution-n03}\\
\includegraphics[width=1\textwidth]{tdistribution-n05}\\
\includegraphics[width=1\textwidth]{tdistribution-n10}\\
\includegraphics[width=1\textwidth]{tdistribution-n50}
\end{solution}
\end{questions}
\end{document}

View File

@ -1,28 +1,28 @@
function savefigpdf( fig, name, width, height )
function savefigpdf(fig, name, width, height)
% Saves figure fig in pdf file name.pdf with appropriately set page size
% and fonts
% default width:
if nargin < 3
width = 11.7;
end
% default height:
if nargin < 4
height = 9.0;
end
% default width:
if nargin < 3
width = 11.7;
end
% default height:
if nargin < 4
height = 9.0;
end
% paper:
set( fig, 'PaperUnits', 'centimeters' );
set( fig, 'PaperSize', [width height] );
set( fig, 'PaperPosition', [0.0 0.0 width height] );
set( fig, 'Color', 'white')
% paper:
set(fig, 'PaperUnits', 'centimeters');
set(fig, 'PaperSize', [width height]);
set(fig, 'PaperPosition', [0.0 0.0 width height]);
set(fig, 'Color', 'white')
% font:
set( findall( fig, 'type', 'axes' ), 'FontSize', 12 )
set( findall( fig, 'type', 'text' ), 'FontSize', 12 )
% font:
set(findall(fig, 'type', 'axes'), 'FontSize', 12)
set(findall(fig, 'type', 'text'), 'FontSize', 12)
% save:
saveas( fig, name, 'pdf' )
% save:
saveas(fig, name, 'pdf')
end

View File

@ -1,10 +1,10 @@
%% (a) generate random numbers:
n = 100000;
x=randn(n, 1);
x = randn(n, 1);
for nsamples=[3 5 10 50]
for nsamples = [3 5 10 50]
nsamples
%% compute mean, standard deviation and t:
% compute mean, standard deviation and t:
nmeans = 10000;
means = zeros(nmeans, 1);
sdevs = zeros(nmeans, 1);
@ -19,14 +19,14 @@ for nsamples=[3 5 10 50]
% Gaussian pdfs:
msdev = std(means);
tsdev = 1.0;
dxg=0.01;
dxg = 0.01;
xmax = 10.0;
xmin = -xmax;
xg = [xmin:dxg:xmax];
pm = exp(-0.5*(xg/msdev).^2)/sqrt(2.0*pi)/msdev;
pt = exp(-0.5*(xg/tsdev).^2)/sqrt(2.0*pi)/tsdev;
%% plots
% plots:
subplot(1, 2, 1)
bins = xmin:0.2:xmax;
[h,b] = hist(means, bins);
@ -35,7 +35,7 @@ for nsamples=[3 5 10 50]
hold on
plot(xg, pm, 'r', 'linewidth', 2)
title(sprintf('sample size = %d', nsamples));
xlim( [-3, 3] );
xlim([-3, 3]);
xlabel('Mean');
ylabel('pdf');
hold off;
@ -48,11 +48,11 @@ for nsamples=[3 5 10 50]
hold on
plot(xg, pt, 'r', 'linewidth', 2)
title(sprintf('sample size = %d', nsamples));
xlim( [-8, 8] );
xlim([-8, 8]);
xlabel('Student-t');
ylabel('pdf');
hold off;
savefigpdf(gcf, sprintf('tdistribution-n%02d.pdf', nsamples), 14, 5);
pause( 3.0 )
pause(3.0)
end

View File

@ -10,6 +10,8 @@
\setcounter{page}{\pagenumber}
\setcounter{chapter}{\chapternumber}
\renewcommand{\exercisesolutions}{here} % 0: here, 1: chapter, 2: end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
@ -17,10 +19,20 @@
\include{bootstrap}
\section{TODO}
This chapter easily covers two lectures:
\begin{itemize}
\item 1. Bootstrapping with a proper introduction of of confidence intervals
\item 2. Permutation test with a proper introduction of statistical tests (dsitribution of nullhypothesis, significance, power, etc.)
\item 2. Permutation test with a proper introduction of statistical tests (distribution of nullhypothesis, significance, power, etc.)
\end{itemize}
ToDo:
\begin{itemize}
\item Add jacknife methods to bootstrapping
\item Add discussion of confidence intervals to descriptive statistics chapter
\item Have a separate chapter on statistical tests before. What is the
essence of a statistical test (null hypothesis distribution), power
analysis, and a few examples of existing functions for statistical
tests.
\end{itemize}
\end{document}

View File

@ -1,20 +1,28 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Bootstrap methods}
\chapter{Resampling methods}
\label{bootstrapchapter}
\exercisechapter{Bootstrap methods}
\exercisechapter{Resampling methods}
Bootstrapping methods are applied to create distributions of
statistical measures via resampling of a sample. Bootstrapping offers several
advantages:
\entermde{Resampling methoden}{Resampling methods} are applied to
generate distributions of statistical measures via resampling of
existing samples. Resampling offers several advantages:
\begin{itemize}
\item Fewer assumptions (e.g. a measured sample does not need to be
normally distributed).
\item Increased precision as compared to classical methods. %such as?
\item General applicability: the bootstrapping methods are very
\item General applicability: the resampling methods are very
similar for different statistics and there is no need to specialize
the method to specific statistic measures.
\end{itemize}
Resampling methods can be used for both estimating the precision of
estimated statistics (e.g. standard error of the mean, confidence
intervals) and testing for significane.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Bootstrapping}
\begin{figure}[tp]
\includegraphics[width=0.8\textwidth]{2012-10-29_16-26-05_771}\\[2ex]
@ -84,19 +92,20 @@ of the statistical population. We can use the bootstrap distribution
to draw conclusion regarding the precision of our estimation (e.g.
standard errors and confidence intervals).
Bootstrapping methods create bootstrapped samples from a SRS by
Bootstrapping methods generate bootstrapped samples from a SRS by
resampling. The bootstrapped samples are used to estimate the sampling
distribution of a statistical measure. The bootstrapped samples have
the same size as the original sample and are created by randomly
the same size as the original sample and are generated by randomly
drawing with replacement. That is, each value of the original sample
can occur once, multiple time, or not at all in a bootstrapped
can occur once, multiple times, or not at all in a bootstrapped
sample. This can be implemented by generating random indices into the
data set using the \code{randi()} function.
\section{Bootstrap of the standard error}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Bootstrap the standard error}
Bootstrapping can be nicely illustrated at the example of the
Bootstrapping can be nicely illustrated on the example of the
\enterm{standard error} of the mean (\determ{Standardfehler}). The
arithmetic mean is calculated for a simple random sample. The standard
error of the mean is the standard deviation of the expected
@ -116,11 +125,10 @@ population.
the standard error of the mean.}
\end{figure}
Via bootstrapping we create a distribution of the mean values
Via bootstrapping we generate a distribution of mean values
(\figref{bootstrapsemfig}) and the standard deviation of this
distribution is the standard error of the mean.
distribution is the standard error of the sample mean.
\pagebreak[4]
\begin{exercise}{bootstrapsem.m}{bootstrapsem.out}
Create the distribution of mean values from bootstrapped samples
resampled from a single SRS. Use this distribution to estimate the
@ -138,68 +146,166 @@ distribution is the standard error of the mean.
\end{exercise}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Permutation tests}
Statistical tests ask for the probability of a measured value to
originate from a null hypothesis. Is this probability smaller than the
desired \entermde{Signifikanz}{significance level}, the
\entermde{Nullhypothese}{null hypothesis} may be rejected.
\entermde{Nullhypothese}{null hypothesis} can be rejected.
Traditionally, such probabilities are taken from theoretical
distributions which are based on assumptions about the data. Thus the
applied statistical test has to be appropriate for the type of
data. An alternative approach is to calculate the probability density
of the null hypothesis directly from the data itself. To do this, we
need to resample the data according to the null hypothesis from the
SRS. By such permutation operations we destroy the feature of interest
while we conserve all other statistical properties of the data.
distributions which have been derived based on some assumptions about
the data. For example, the data should be normally distributed. Given
some data one has to find an appropriate test that matches the
properties of the data. An alternative approach is to calculate the
probability density of the null hypothesis directly from the data
themselves. To do so, we need to resample the data according to the
null hypothesis from the SRS. By such permutation operations we
destroy the feature of interest while conserving all other statistical
properties of the data.
\subsection{Significance of a difference in the mean}
Often we would like to know whether two data sets differ in their
mean. Whether the ears of foxes are larger in southern Europe compared
to the ones from Scandinavia, whether a drug decreases blood pressure
in humans, whether a sensory stimulus increases the firing rate of a
neuron, etc. The \entermde{Nullhypothese}{null hypothesis} is that
they do not differ in their means, i.e. that both data sets come from
the same distribution. But even if the two data sets come from the
same distribution, their sample means may nevertheless differ by
chance. We need to figure out how these differences of the means are
distributed. Only if the measured difference between the means is
significantly larger than the ones obtained by chance we can reject
the null hypothesis and consider the two data sets to differ
significantly in their means.
We can easily estimate the distribution of the null hypothesis by
putting the data of both data sets in one big bag. By merging the two
data sets we assume that all the data values come from the same
distribution. We then randomly separate the data values into two new
data sets. These random data sets contain data from both original data
sets and thus come from the same distribution. From these random data
sets we compute the difference of their sample means. This procedure
is repeated many, say one thousand, times and each time we get a value
for a difference of means. The distribution of these values is the
distribution of the null hypothesis. It is the distribution of
differences of mean values that we get by chance although the two data
sets come from the same distribution. For a one-sided test that checks
whether the measured difference of means is significantly larger than
zero at a significance level of 5\,\% we compute the value of the
95\,\% percentile of the null distribution. If the measured value is
larger, we can reject the null hypothesis and consider the two data
sets to differ significantly in their means.
By using the original data to estimate the null hypothesis, we make no
assumption about the properties of the data. We do not need to worry
about the data being normally distributed. We do not need to memorize
which test to use in which situation. And we better understand what we
are testing, because we design the test ourselves. Nowadays, computer
are powerful enough to iterate even ten thousand times over the data
to compute the distribution of the null hypothesis --- with only a few
lines of code. This is why \entermde{Permutationstest}{permutaion
test} are getting quite popular.
\begin{figure}[tp]
\includegraphics[width=1\textwidth]{permutecorrelation}
\titlecaption{\label{permutecorrelationfig}Permutation test for
correlations.}{Let the correlation coefficient of a dataset with
200 samples be $\rho=0.21$. The distribution of the null
hypothesis (yellow), optained from the correlation coefficients of
permuted and therefore uncorrelated datasets is centered around
zero. The measured correlation coefficient is larger than the
95\,\% percentile of the null hypothesis. The null hypothesis may
thus be rejected and the measured correlation is considered
statistically significant.}
\includegraphics[width=1\textwidth]{permuteaverage}
\titlecaption{\label{permuteaverage}Permutation test for differences
in means.}{We want to test whether two datasets
$\left\{x_i\right\}$ (red) and $\left\{y_i\right\}$ (blue) come
from different distributions by assessing the significance of the
difference in their sample means. The data sets were generated
with a difference in their population means of $d=0.7$. For
generating the distribution of the null hypothesis, i.e. the
distribution of differences in the means if the two data sets come
from the same distribution, we randomly select the same number of
samples from both data sets (top right). This is repeated many
times and results in the desired distribution of differences of
means (bottom). The measured difference is clearly beyond the
95\,\% percentile of this distribution and thus indicates a
significant difference between the distributions of the two
original data sets.}
\end{figure}
A good example for the application of a
\entermde{Permutationstest}{permutaion test} is the statistical
assessment of \entermde[correlation]{Korrelation}{correlations}. Given
are measured pairs of data points $(x_i, y_i)$. By calculating the
\begin{exercise}{meandiffsignificance.m}{meandiffsignificance.out}
Estimate the statistical significance of a difference in the mean of two data sets.
\vspace{-1ex}
\begin{enumerate}
\item Generate two independent data sets, $\left\{x_i\right\}$ and
$\left\{y_i\right\}$, of $n=200$ samples each, by drawing random
numbers from a normal distribution. Add 0.2 to all the $y_i$ samples
to ensure the population means to differ by 0.2.
\item Calculate the difference between the sample means of the two data sets.
\item Estimate the distribution of the null hypothesis of no
difference of the means by generating new data sets with the same
number of samples randomly selected from both data sets. For this
lump the two data sets together into a single vector. Then permute
the order of the elements in this vector using the function
\varcode{randperm()}, split it into two data sets and calculate
the difference of their means. Repeat this 1000 times.
\item Read out the 95\,\% percentile from the resulting distribution
of the differences in the mean, the null hypothesis using the
\varcode{quantile()} function, and compare it with the difference of
means measured from the original data sets.
\end{enumerate}
\end{exercise}
\subsection{Significance of correlations}
Another nice example for the application of a
\entermde{Permutationstest}{permutaion test} is testing for
significant \entermde[correlation]{Korrelation}{correlations}
(figure\,\ref{permutecorrelationfig}). Given are measured pairs of
data points $(x_i, y_i)$. By calculating the
\entermde[correlation!correlation
coefficient]{Korrelationskoeffizient}{correlation
coefficient} we can quantify how strongly $y$ depends on $x$. The
correlation coefficient alone, however, does not tell whether the
correlation is significantly different from a random correlation. The
\entermde{Nullhypothese}{null hypothesis} for such a situation is that
$y$ does not depend on $x$. In order to perform a permutation test, we
need to destroy the correlation by permuting the $(x_i, y_i)$ pairs,
i.e. we rearrange the $x_i$ and $y_i$ values in a random
coefficient]{Korrelationskoeffizient}{correlation coefficient} we can
quantify how strongly $y$ depends on $x$. The correlation coefficient
alone, however, does not tell whether the correlation is significantly
different from a non-zero correlation that we might get although there
is no true correlation in the data. The \entermde{Nullhypothese}{null
hypothesis} for such a situation is that $y$ does not depend on
$x$. In order to perform a permutation test, we need to destroy the
correlation between the data pairs by permuting the $(x_i, y_i)$
pairs, i.e. we rearrange the $x_i$ and $y_i$ values in a random
fashion. Generating many sets of random pairs and computing the
resulting correlation coefficients yields a distribution of
correlation coefficients that result randomly from uncorrelated
corresponding correlation coefficients yields a distribution of
correlation coefficients that result randomly from truly uncorrelated
data. By comparing the actually measured correlation coefficient with
this distribution we can directly assess the significance of the
correlation (figure\,\ref{permutecorrelationfig}).
correlation.
\begin{figure}[tp]
\includegraphics[width=1\textwidth]{permutecorrelation}
\titlecaption{\label{permutecorrelationfig}Permutation test for
correlations.}{Let the correlation coefficient of a dataset with
200 samples be $\rho=0.21$ (top left). By shuffling the data pairs
we destroy any true correlation (top right). The resulting
distribution of the null hypothesis (bottm, yellow), optained from
the correlation coefficients of permuted and therefore
uncorrelated datasets is centered around zero. The measured
correlation coefficient is larger than the 95\,\% percentile of
the null hypothesis. The null hypothesis may thus be rejected and
the measured correlation is considered statistically significant.}
\end{figure}
\begin{exercise}{correlationsignificance.m}{correlationsignificance.out}
Estimate the statistical significance of a correlation coefficient.
\begin{enumerate}
\item Create pairs of $(x_i, y_i)$ values. Randomly choose $x$-values
\item Generate pairs of $(x_i, y_i)$ values. Randomly choose $x$-values
and calculate the respective $y$-values according to $y_i =0.2 \cdot x_i + u_i$
where $u_i$ is a random number drawn from a normal distribution.
\item Calculate the correlation coefficient.
\item Generate the distribution of the null hypothesis by generating
\item Estimate the distribution of the null hypothesis by generating
uncorrelated pairs. For this permute $x$- and $y$-values
\matlabfun{randperm()} 1000 times and calculate for each permutation
the correlation coefficient.
\item Read out the 95\,\% percentile from the resulting distribution
of the null hypothesis and compare it with the correlation
coefficient computed from the original data.
of the null hypothesis using the \varcode{quantile()} function and
compare it with the correlation coefficient computed from the
original data.
\end{enumerate}
\end{exercise}

View File

@ -24,7 +24,7 @@ for i in range(nresamples) :
musrs.append(np.mean(rng.randn(nsamples)))
hmusrs, _ = np.histogram(musrs, bins, density=True)
fig, ax = plt.subplots(figsize=cm_size(figure_width, 1.2*figure_height))
fig, ax = plt.subplots(figsize=cm_size(figure_width, 1.05*figure_height))
fig.subplots_adjust(**adjust_fs(left=4.0, bottom=2.7, right=1.5))
ax.set_xlabel('Mean')
ax.set_xlim(-0.4, 0.4)

View File

@ -0,0 +1,103 @@
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.ticker as ticker
from plotstyle import *
rng = np.random.RandomState(637281)
# generate data that differ in their mein by d:
n = 200
d = 0.7
x = rng.randn(n) + d;
y = rng.randn(n);
#x = rng.exponential(1.0, n);
#y = rng.exponential(1.0, n) + d;
# histogram of data:
db = 0.5
bins = np.arange(-2.5, 2.6, db)
hx, _ = np.histogram(x, bins)
hy, _ = np.histogram(y, bins)
# Diference of means, pooled standard deviation and Cohen's d:
ad = np.mean(x)-np.mean(y)
s = np.sqrt(((len(x)-1)*np.var(x)+(len(y)-1)*np.var(y))/(len(x)+len(y)-2))
cd = ad/s
# permutation:
nperm = 1000
ads = []
xy = np.hstack((x, y))
for i in range(nperm) :
xyp = rng.permutation(xy)
ads.append(np.mean(xyp[:len(x)])-np.mean(xyp[len(x):]))
# histogram of shuffled data:
hxp, _ = np.histogram(xyp[:len(x)], bins)
hyp, _ = np.histogram(xyp[len(x):], bins)
# pdf of the differences of means:
h, b = np.histogram(ads, 20, density=True)
# significance:
dq = np.percentile(ads, 95.0)
print('Measured difference of means = %.2f, difference at 95%% percentile of permutation = %.2f' % (ad, dq))
da = 1.0-0.01*st.percentileofscore(ads, ad)
print('Measured difference of means %.2f is at %.2f%% percentile of permutation' % (ad, 100.0*da))
ap, at = st.ttest_ind(x, y)
print('Measured difference of means %.2f is at %.2f%% percentile of test' % (ad, ap))
fig = plt.figure(figsize=cm_size(figure_width, 1.8*figure_height))
gs = gridspec.GridSpec(nrows=2, ncols=2, wspace=0.35, hspace=0.8,
**adjust_fs(fig, left=5.0, right=1.5, top=1.0, bottom=2.7))
ax = fig.add_subplot(gs[0,0])
ax.bar(bins[:-1]-0.25*db, hy, 0.5*db, **fsA)
ax.bar(bins[:-1]+0.25*db, hx, 0.5*db, **fsB)
ax.annotate('', xy=(0.0, 45.0), xytext=(d, 45.0), arrowprops=dict(arrowstyle='<->'))
ax.text(0.5*d, 50.0, 'd=%.1f' % d, ha='center')
ax.set_xlim(-2.5, 2.5)
ax.set_ylim(0.0, 50)
ax.yaxis.set_major_locator(ticker.MultipleLocator(20.0))
ax.set_xlabel('Original x and y values')
ax.set_ylabel('Counts')
ax = fig.add_subplot(gs[0,1])
ax.bar(bins[:-1]-0.25*db, hyp, 0.5*db, **fsA)
ax.bar(bins[:-1]+0.25*db, hxp, 0.5*db, **fsB)
ax.set_xlim(-2.5, 2.5)
ax.set_ylim(0.0, 50)
ax.yaxis.set_major_locator(ticker.MultipleLocator(20.0))
ax.set_xlabel('Shuffled x and y values')
ax.set_ylabel('Counts')
ax = fig.add_subplot(gs[1,:])
ax.annotate('Measured\ndifference\nis significant!',
xy=(ad, 1.2), xycoords='data',
xytext=(ad-0.1, 2.2), textcoords='data', ha='right',
arrowprops=dict(arrowstyle="->", relpos=(1.0,0.5),
connectionstyle="angle3,angleA=-20,angleB=100") )
ax.annotate('95% percentile',
xy=(0.19, 0.9), xycoords='data',
xytext=(0.3, 5.0), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.1,0.0),
connectionstyle="angle3,angleA=40,angleB=80") )
ax.annotate('Distribution of\nnullhypothesis',
xy=(-0.08, 3.0), xycoords='data',
xytext=(-0.22, 4.5), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.2,0.0),
connectionstyle="angle3,angleA=60,angleB=150") )
ax.bar(b[:-1], h, width=b[1]-b[0], **fsC)
ax.bar(b[:-1][b[:-1]>=dq], h[b[:-1]>=dq], width=b[1]-b[0], **fsB)
ax.plot( [ad, ad], [0, 1], **lsA)
ax.set_xlim(-0.25, 0.85)
ax.set_ylim(0.0, 5.0)
ax.yaxis.set_major_locator(ticker.MultipleLocator(2.0))
ax.set_xlabel('Difference of means')
ax.set_ylabel('PDF of H0')
plt.savefig('permuteaverage.pdf')

View File

@ -1,9 +1,11 @@
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.ticker as ticker
from plotstyle import *
rng = np.random.RandomState(637281)
rng = np.random.RandomState(37281)
# generate correlated data:
n = 200
@ -19,32 +21,56 @@ rd = np.corrcoef(x, y)[0, 1]
nperm = 1000
rs = []
for i in range(nperm) :
xr=rng.permutation(x)
yr=rng.permutation(y)
rs.append( np.corrcoef(xr, yr)[0, 1] )
xr = rng.permutation(x)
yr = rng.permutation(y)
rs.append(np.corrcoef(xr, yr)[0, 1])
rr = np.corrcoef(xr, yr)[0, 1]
# pdf of the correlation coefficients:
h, b = np.histogram(rs, 20, density=True)
# significance:
rq = np.percentile(rs, 95.0)
print('Measured correlation coefficient = %.2f, correlation coefficient at 95%% percentile of bootstrap = %.2f' % (rd, rq))
print('Measured correlation coefficient = %.2f, correlation coefficient at 95%% percentile of permutation = %.2f' % (rd, rq))
ra = 1.0-0.01*st.percentileofscore(rs, rd)
print('Measured correlation coefficient %.2f is at %.4f percentile of bootstrap' % (rd, ra))
print('Measured correlation coefficient %.2f is at %.4f percentile of permutation' % (rd, ra))
rp, ra = st.pearsonr(x, y)
print('Measured correlation coefficient %.2f is at %.4f percentile of test' % (rp, ra))
fig, ax = plt.subplots(figsize=cm_size(figure_width, 1.2*figure_height))
fig.subplots_adjust(**adjust_fs(left=4.0, bottom=2.7, right=0.5, top=1.0))
fig = plt.figure(figsize=cm_size(figure_width, 1.8*figure_height))
gs = gridspec.GridSpec(nrows=2, ncols=2, wspace=0.35, hspace=0.8,
**adjust_fs(fig, left=5.0, right=1.5, top=1.0, bottom=2.7))
ax = fig.add_subplot(gs[0,0])
ax.text(0.0, 4.0, 'r=%.2f' % rd, ha='center')
ax.plot(x, y, **psAm)
ax.set_xlim(-4.0, 4.0)
ax.set_ylim(-4.0, 4.0)
ax.xaxis.set_major_locator(ticker.MultipleLocator(2.0))
ax.yaxis.set_major_locator(ticker.MultipleLocator(2.0))
ax.set_xlabel('x')
ax.set_ylabel('y')
ax = fig.add_subplot(gs[0,1])
ax.text(0.0, 4.0, 'r=%.2f' % rr, ha='center')
ax.plot(xr, yr, **psAm)
ax.set_xlim(-4.0, 4.0)
ax.set_ylim(-4.0, 4.0)
ax.xaxis.set_major_locator(ticker.MultipleLocator(2.0))
ax.yaxis.set_major_locator(ticker.MultipleLocator(2.0))
ax.set_xlabel('Shuffled x')
ax.set_ylabel('Shuffled y')
ax = fig.add_subplot(gs[1,:])
ax.annotate('Measured\ncorrelation\nis significant!',
xy=(rd, 1.1), xycoords='data',
xytext=(rd, 2.2), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.2,0.0),
xytext=(rd-0.01, 3.0), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.3,0.0),
connectionstyle="angle3,angleA=10,angleB=80") )
ax.annotate('95% percentile',
xy=(0.14, 0.9), xycoords='data',
xytext=(0.18, 4.0), textcoords='data', ha='left',
xytext=(0.16, 6.2), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.1,0.0),
connectionstyle="angle3,angleA=30,angleB=80") )
ax.annotate('Distribution of\nuncorrelated\nsamples',
@ -56,7 +82,9 @@ ax.bar(b[:-1], h, width=b[1]-b[0], **fsC)
ax.bar(b[:-1][b[:-1]>=rq], h[b[:-1]>=rq], width=b[1]-b[0], **fsB)
ax.plot( [rd, rd], [0, 1], **lsA)
ax.set_xlim(-0.25, 0.35)
ax.set_ylim(0.0, 6.0)
ax.yaxis.set_major_locator(ticker.MultipleLocator(2.0))
ax.set_xlabel('Correlation coefficient')
ax.set_ylabel('Prob. density of H0')
ax.set_ylabel('PDF of H0')
plt.savefig('permutecorrelation.pdf')

View File

@ -10,6 +10,8 @@ pythonplots : $(PYPDFFILES)
$(PYPDFFILES) : %.pdf: %.py ../../plotstyle.py
PYTHONPATH="../../" python3 $<
#ps2pdf $@ $(@:.pdf=-temp.pdf) # strip fonts, saves only about 1.5MB
#mv $(@:.pdf=-temp.pdf) $@
cleanpythonplots :
rm -f $(PYPDFFILES)
@ -42,6 +44,9 @@ $(BASENAME)-chapter.pdf : $(BASENAME)-chapter.tex $(BASENAME).tex $(wildcard $(B
watchchapter :
while true; do ! make -q chapter && make chapter; sleep 0.5; done
watchplots :
while true; do ! make -q plots && make plots; sleep 0.5; done
cleantex:
rm -f *~
rm -f $(BASENAME).aux $(BASENAME).log *.idx

View File

@ -4,6 +4,7 @@
more months might as well have been written by someone
else.}{Eagleson's law}
\noindent
Cultivating a good code style is not just a matter of good taste but
rather is a key ingredient for readability and maintainability of code
and, in the end, facilitates reproducibility of scientific
@ -204,7 +205,7 @@ random walk\footnote{A random walk is a simple simulation of Brownian
(listing \ref{chaoticcode}) then in cleaner way (listing
\ref{cleancode})
\begin{lstlisting}[label=chaoticcode, caption={Chaotic implementation of the random-walk.}]
\begin{pagelisting}[label=chaoticcode, caption={Chaotic implementation of the random-walk.}]
num_runs = 10; max_steps = 1000;
positions = zeros(max_steps, num_runs);
@ -218,17 +219,14 @@ x = randn(1);
if x<0
positions(step, run)= positions(step-1, run)+1;
elseif x>0
positions(step,run)=positions(step-1,run)-1;
end
end
end
\end{lstlisting}
\pagebreak[4]
\end{pagelisting}
\begin{lstlisting}[label=cleancode, caption={Clean implementation of the random-walk.}]
\begin{pagelisting}[label=cleancode, caption={Clean implementation of the random-walk.}]
num_runs = 10;
max_steps = 1000;
positions = zeros(max_steps, num_runs);
@ -243,7 +241,7 @@ for run = 1:num_runs
end
end
end
\end{lstlisting}
\end{pagelisting}
\section{Using comments}
@ -275,7 +273,6 @@ avoided:\\ \varcode{ x = x + 2; \% add two to x}\\
make it even clearer.}{Steve McConnell}
\end{important}
\pagebreak[4]
\section{Documenting functions}
All pre-defined \matlab{} functions begin with a comment block that
describes the purpose of the function, the required and optional
@ -335,8 +332,7 @@ used within the context of another function \matlab{} allows to define
within the same file. Listing \ref{localfunctions} shows an example of
a local function definition.
\pagebreak[3]
\lstinputlisting[label=localfunctions, caption={Example for local
\pageinputlisting[label=localfunctions, caption={Example for local
functions.}]{calculateSines.m}
\emph{Local function} live in the same \entermde{m-File}{m-file} as

View File

@ -59,14 +59,14 @@ every opening parenthesis must be matched by a closing one or every
respective error messages are clear and the editor will point out and
highlight most syntax errors.
\begin{lstlisting}[label=syntaxerror, caption={Unbalanced parenthesis error.}]
\begin{pagelisting}[label=syntaxerror, caption={Unbalanced parenthesis error.}]
>> mean(random_numbers
|
Error: Expression or statement is incorrect--possibly unbalanced (, {, or [.
Did you mean:
>> mean(random_numbers)
\end{lstlisting}
\end{pagelisting}
\subsection{Indexing error}\label{index_error}
Second on the list of common errors are the
@ -125,7 +125,7 @@ dimensions. The command in line 7 works due to the fact, that matlab
automatically extends the matrix, if you assign values to a range
outside its bounds.
\begin{lstlisting}[label=assignmenterror, caption={Assignment errors.}]
\begin{pagelisting}[label=assignmenterror, caption={Assignment errors.}]
>> a = zeros(1, 100);
>> b = 0:10;
@ -136,7 +136,7 @@ outside its bounds.
>> size(a)
ans =
110 1
\end{lstlisting}
\end{pagelisting}
\subsection{Dimension mismatch error}
Similarly, some arithmetic operations are only valid if the variables
@ -154,7 +154,7 @@ in listing\,\ref{dimensionmismatch} does not throw an error but the
result is something else than the expected elementwise multiplication.
% XXX Some arithmetic operations make size constraints, violating them leads to dimension mismatch errors.
\begin{lstlisting}[label=dimensionmismatch, caption={Dimension mismatch errors.}]
\begin{pagelisting}[label=dimensionmismatch, caption={Dimension mismatch errors.}]
>> a = randn(100, 1);
>> b = randn(10, 1);
>> a + b
@ -171,7 +171,7 @@ result is something else than the expected elementwise multiplication.
>> size(c)
ans =
100 10
\end{lstlisting}
\end{pagelisting}
@ -239,7 +239,7 @@ but it requires a deep understanding of the applied functions and also
the task at hand.
% XXX Converting a series of spike times into the firing rate as a function of time. Many tasks can be solved with a single line of code. But is this readable?
\begin{lstlisting}[label=easyvscomplicated, caption={One-liner versus readable code.}]
\begin{pagelisting}[label=easyvscomplicated, caption={One-liner versus readable code.}]
% the one-liner
rate = conv(full(sparse(1, round(spike_times/dt), 1, 1, length(time))), kernel, 'same');
@ -248,7 +248,7 @@ rate = zeros(size(time));
spike_indices = round(spike_times/dt);
rate(spike_indices) = 1;
rate = conv(rate, kernel, 'same');
\end{lstlisting}
\end{pagelisting}
The preferred way depends on several considerations. (i) How deep is
your personal understanding of the programming language? (ii) What
@ -291,7 +291,7 @@ example given in the \matlab{} help and assume that there is a
function \varcode{rightTriangle()} (listing\,\ref{trianglelisting}).
% XXX Slightly more readable version of the example given in the \matlab{} help system. Note: The variable name for the angles have been capitalized in order to not override the matlab defined functions \code{alpha, beta,} and \code{gamma}.
\begin{lstlisting}[label=trianglelisting, caption={Example function for unit testing.}]
\begin{pagelisting}[label=trianglelisting, caption={Example function for unit testing.}]
function angles = rightTriangle(length_a, length_b)
ALPHA = atand(length_a / length_b);
BETA = atand(length_a / length_b);
@ -300,7 +300,7 @@ function angles = rightTriangle(length_a, length_b)
angles = [ALPHA BETA GAMMA];
end
\end{lstlisting}
\end{pagelisting}
This function expects two input arguments that are the length of the
sides $a$ and $b$ and assumes a right angle between them. From this
@ -337,7 +337,7 @@ The test script for the \varcode{rightTriangle()} function
(listing\,\ref{trianglelisting}) may look like in
listing\,\ref{testscript}.
\begin{lstlisting}[label=testscript, caption={Unit test for the \varcode{rightTriangle()} function stored in an m-file testRightTriangle.m}]
\begin{pagelisting}[label=testscript, caption={Unit test for the \varcode{rightTriangle()} function stored in an m-file testRightTriangle.m}]
tolerance = 1e-10;
% preconditions
@ -373,7 +373,7 @@ angles = rightTriangle(1, 1500);
smallAngle = (pi / 180) * angles(1); % radians
approx = sin(smallAngle);
assert(abs(approx - smallAngle) <= tolerance, 'Problem with small angle approximation')
\end{lstlisting}
\end{pagelisting}
In a test script we can execute any code. The actual test whether or
not the results match our predictions is done using the
@ -390,16 +390,16 @@ executed. We further define a \varcode{tolerance} variable that is
used when comparing double values (Why might the test on equality of
double values be tricky?).
\begin{lstlisting}[label=runtestlisting, caption={Run the test!}]
\begin{pagelisting}[label=runtestlisting, caption={Run the test!}]
result = runtests('testRightTriangle')
\end{lstlisting}
\end{pagelisting}
During the run, \matlab{} will put out error messages onto the command
line and a summary of the test results is then stored within the
\varcode{result} variable. These can be displayed using the function
\code[table()]{table(result)}.
\begin{lstlisting}[label=testresults, caption={The test results.}, basicstyle=\ttfamily\scriptsize]
\begin{pagelisting}[label=testresults, caption={The test results.}, basicstyle=\ttfamily\scriptsize]
table(result)
ans =
4x6 table
@ -411,7 +411,7 @@ _________________________________ ______ ______ ___________ ________ _____
'testR.../Test_IsoscelesTriangles' true false false 0.004893 [1x1 struct]
'testR.../Test_30_60_90Triangle' true false false 0.005057 [1x1 struct]
'testR.../Test_SmallAngleApprox' true false false 0.0049 [1x1 struct]
\end{lstlisting}
\end{pagelisting}
So far so good, all tests pass and our function appears to do what it
is supposed to do. But tests are only as good as the programmer who
@ -479,11 +479,11 @@ stopped in debug mode (listing\,\ref{debuggerlisting}).
\end{figure}
\begin{lstlisting}[label=debuggerlisting, caption={Command line when the program execution was stopped in the debugger.}]
\begin{pagelisting}[label=debuggerlisting, caption={Command line when the program execution was stopped in the debugger.}]
>> simplerandomwalk
6 for run = 1:num_runs
K>>
\end{lstlisting}
\end{pagelisting}
When stopped in the debugger we can view and change the state of the
program at this point, we can also issue commands to try the next

View File

@ -10,7 +10,8 @@ pattern]{design pattern}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Looping over vector elements}
Iterating over vector elements by means of a \mcode{for}-loop is a very commen pattern:
\begin{lstlisting}[caption={\varcode{for}-loop for accessing vector elements by indices}]
\begin{pagelisting}[caption={\varcode{for}-loop for accessing vector elements by indices}]
x = [2:3:20]; % Some vector.
for i=1:length(x) % For loop over the indices of the vector.
i % This is the index (an integer number)
@ -22,12 +23,14 @@ for i=1:length(x) % For loop over the indices of the vector.
% as an argument to a function:
do_something(x(i));
end
\end{lstlisting}
\end{pagelisting}
\noindent
If the result of the computation within the loop are single numbers
that are to be stored in a vector, you should create this vector with
the right size before the loop:
\begin{lstlisting}[caption={\varcode{for}-loop for writing a vector}]
\begin{pagelisting}[caption={\varcode{for}-loop for writing a vector}]
x = [1.2 2.3 2.6 3.1]; % Some vector.
% Create a vector for the results, as long as the number of loops:
y = zeros(length(x),1);
@ -38,13 +41,15 @@ for i=1:length(x)
end
% Now the result vector can be further processed:
mean(y);
\end{lstlisting}
\end{pagelisting}
\noindent
The computation within the loop could also result in a vector of some
length and not just a single number. If the length of this vector
(here 10) is known beforehand, then you should create a matrix of
appropriate size for storing the results:
\begin{lstlisting}[caption={\varcode{for}-loop for writing rows of a matrix}]
\begin{pagelisting}[caption={\varcode{for}-loop for writing rows of a matrix}]
x = [2:3:20]; % Some vector.
% Create space for results -
% as many rows as loops, as many columns as needed:
@ -56,30 +61,33 @@ for i=1:length(x)
end
% Process the results stored in matrix y:
mean(y, 1)
\end{lstlisting}
\end{pagelisting}
\noindent
Another possibility is that the result vectors (here of unknown size)
need to be combined into a single large vector:
\begin{lstlisting}[caption={\varcode{for}-loop for appending vectors}]
\begin{pagelisting}[caption={\varcode{for}-loop for appending vectors}]
x = [2:3:20]; % Some vector.
y = []; % Empty vector for storing the results.
for i=1:length(x)
% The function get_something() returns a vector of unspecified size:
z = get_somehow_more(x(i));
z = get_something(x(i));
% The content of z is appended to the result vector y:
y = [y; z(:)];
y = [y, z(:)];
% The z(:) syntax ensures that we append column-vectors.
end
% Process the results stored in the vector z:
mean(y)
\end{lstlisting}
% Process the results stored in the vector y:
mean(y, 1)
\end{pagelisting}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Scaling and shifting random numbers, zeros, and ones}
Random number generators usually return random numbers of a given mean
and standard deviation. Multiply those numbers by a factor to change their standard deviation and add a number to shift the mean.
\begin{lstlisting}[caption={Scaling and shifting of random numbers}]
\begin{pagelisting}[caption={Scaling and shifting of random numbers}]
% 100 random numbers drawn from a normal distribution
% with mean 0 and standard deviation 1:
x = randn(100, 1);
@ -89,18 +97,20 @@ x = randn(100, 1);
mu = 4.8;
sigma = 2.3;
y = randn(100, 1)*sigma + mu;
\end{lstlisting}
\end{pagelisting}
\noindent
The same principle can be useful for in the context of the functions
\mcode{zeros()} or \mcode{ones()}:
\begin{lstlisting}[caption={Scaling and shifting of \varcode{zeros()} and \varcode{ones()}}]
\begin{pagelisting}[caption={Scaling and shifting of \varcode{zeros()} and \varcode{ones()}}]
x = -1:0.01:2; % Vector of x-values for plotting
plot(x, exp(-x.*x));
% Plot for the same x-values a horizontal line with y=0.8:
plot(x, zeros(size(x))+0.8);
% ... or a line with y=0.5:
plot(x, ones(size(x))*0.5);
\end{lstlisting}
\end{pagelisting}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -119,25 +129,26 @@ can plot the values of the $y$ vector against the ones of the $x$
vector.
The following scripts compute and plot the function $f(x)=e^{-x^2}$:
\begin{lstlisting}[caption={Plotting a mathematical function --- very detailed}]
\begin{pagelisting}[caption={Plotting a mathematical function --- very detailed}]
xmin = -1.0;
xmax = 2.0;
dx = 0.01; % Step size
x = xmin:dx:xmax; % Vector with x-values.
y = exp(-x.*x); % No for loop! '.*' for multiplying the vector elements.
plot(x, y);
\end{lstlisting}
\end{pagelisting}
\begin{lstlisting}[caption={Plotting a mathematical function --- shorter}]
\begin{pagelisting}[caption={Plotting a mathematical function --- shorter}]
x = -1:0.01:2;
y = exp(-x.*x);
plot(x, y);
\end{lstlisting}
\end{pagelisting}
\begin{lstlisting}[caption={Plotting a mathematical function --- compact}]
\begin{pagelisting}[caption={Plotting a mathematical function --- compact}]
x = -1:0.01:2;
plot(x, exp(-x.*x));
\end{lstlisting}
\end{pagelisting}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -146,28 +157,34 @@ For estimating probabilities or probability densities from histograms
we need to normalize them appropriately.
The \mcode{histogram()} function does this automatically with the appropriate arguments:
\begin{lstlisting}[caption={Probability density with the \varcode{histogram()}-function}]
\begin{pagelisting}[caption={Probability density with the \varcode{histogram()}-function}]
x = randn(100, 1); % Some real-valued data.
histogram(x, 'Normalization', 'pdf');
\end{lstlisting}
\begin{lstlisting}[caption={Probability with the \varcode{histogram()}-function}]
\end{pagelisting}
\begin{pagelisting}[caption={Probability with the \varcode{histogram()}-function}]
x = randi(6, 100, 1); % Some integer-valued data.
histogram(x, 'Normalization', 'probability');
\end{lstlisting}
\end{pagelisting}
\noindent
Alternatively one can normalize the histogram data as returned by the
\code{hist()}-function manually:
\begin{lstlisting}[caption={Probability density with the \varcode{hist()}- and \varcode{bar()}-function}]
\begin{pagelisting}[caption={Probability density with the \varcode{hist()}- and \varcode{bar()}-function}]
x = randn(100, 1); % Some real-valued data.
[h, b] = hist(x); % Compute histogram.
h = h/sum(h)/(b(2)-b(1)); % Normalization to a probability density.
bar(b, h); % Plot the probability density.
\end{lstlisting}
\begin{lstlisting}[caption={Probability with the \varcode{hist()}- and \varcode{bar()}-function}]
\end{pagelisting}
\begin{pagelisting}[caption={Probability with the \varcode{hist()}- and \varcode{bar()}-function}]
x = randi(6, 100, 1); % Some integer-valued data.
[h, b] = hist(x); % Compute histogram.
h = h/sum(h); % Normalize to probability.
bar(b, h); % Plot the probabilities.
\end{lstlisting}
\end{pagelisting}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33
exercises.mk Normal file
View File

@ -0,0 +1,33 @@
EXERCISES=$(TEXFILES:.tex=.pdf)
SOLUTIONS=$(EXERCISES:%.pdf=%-solutions.pdf)
.PHONY: pdf exercises solutions watch watchexercises watchsolutions clean
pdf : $(SOLUTIONS) $(EXERCISES)
exercises : $(EXERCISES)
solutions : $(SOLUTIONS)
$(SOLUTIONS) : %-solutions.pdf : %.tex ../../exercisesheader.tex ../../exercisestitle.tex
{ echo "\\documentclass[answers,12pt,a4paper,pdftex]{exam}"; sed -e '1d' $<; } > $(patsubst %.pdf,%.tex,$@)
pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) || true
rm $(patsubst %.pdf,%,$@).[!p]*
$(EXERCISES) : %.pdf : %.tex ../../exercisesheader.tex ../../exercisestitle.tex
pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $< || true
watch :
while true; do ! make -q pdf && make pdf; sleep 0.5; done
watchexercises :
while true; do ! make -q exercises && make exercises; sleep 0.5; done
watchsolutions :
while true; do ! make -q solutions && make solutions; sleep 0.5; done
clean :
rm -f *~ *.aux *.log *.out
cleanup : clean
rm -f $(SOLUTIONS) $(EXERCISES)

110
exercisesheader.tex Normal file
View File

@ -0,0 +1,110 @@
\usepackage[english]{babel}
\usepackage{pslatex}
\usepackage{graphicx}
\usepackage{tikz}
\usepackage{xcolor}
\usepackage{amsmath}
\usepackage{amssymb}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
% columns=flexible,
frame=single,
xleftmargin=1.5em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%% page style %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=19mm,headsep=2ex,headheight=3ex,footskip=3.5ex]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{Solutions}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large \exercisenum. \exercisetopic}}{{\bfseries\large\stitle}}{{\bfseries\large\exercisedate}}
\firstpagefooter{Prof. Dr. Jan Benda}{}{jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\shadedsolutions
\definecolor{SolutionColor}{gray}{0.9}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\usepackage{multicol}
%%%%% units %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[mediumspace,mediumqspace,Gray,squaren]{SIunits} % \ohm, \micro
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\cin}[1]{[{\rm #1}]_{\text{in}}}
\newcommand{\cout}[1]{[{\rm #1}]_{\text{out}}}
\newcommand{\units}[1]{\text{#1}}
\newcommand{\K}{\text{K$^+$}}
\newcommand{\Na}{\text{Na$^+$}}
\newcommand{\Cl}{\text{Cl$^-$}}
\newcommand{\Ca}{\text{Ca$^{2+}$}}
\newcommand{\water}{$\text{H}_2\text{O}$}
\usepackage{dsfont}
\newcommand{\naZ}{\mathds{N}}
\newcommand{\gaZ}{\mathds{Z}}
\newcommand{\raZ}{\mathds{Q}}
\newcommand{\reZ}{\mathds{R}}
\newcommand{\reZp}{\mathds{R^+}}
\newcommand{\reZpN}{\mathds{R^+_0}}
\newcommand{\koZ}{\mathds{C}}
\newcommand{\RT}{{\rm Re\!\ }}
\newcommand{\IT}{{\rm Im\!\ }}
\newcommand{\arccot}{{\rm arccot}}
\newcommand{\sgn}{{\rm sgn}}
\newcommand{\im}{{\rm i}}
\newcommand{\drv}{\mathrm{d}}
\newcommand{\divis}[2]{$^{#1}\!\!/\!_{#2}$}
\newcommand{\vect}[2]{\left( \!\! \begin{array}{c} #1 \\ #2 \end{array} \!\! \right)}
\newcommand{\matt}[2]{\left( \!\! \begin{array}{cc} #1 \\ #2 \end{array} \!\! \right)}
\renewcommand{\Re}{\mathrm{Re}}
\renewcommand{\Im}{\mathrm{Im}}
\newcommand{\av}[1]{\left\langle #1 \right\rangle}
\newcommand{\pref}[1]{(\ref{#1})}
\newcommand{\eqnref}[1]{(\ref{#1})}
\newcommand{\hr}{\par\vspace{-5ex}\noindent\rule{\textwidth}{1pt}\par\vspace{-1ex}}
\newcommand{\qt}[1]{\textbf{#1}\\}
\newcommand{\extra}{--- Optional ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\continue}{\ifprintanswers%
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\continuepage}{\ifprintanswers%
\newpage
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\newsolutionpage}{\ifprintanswers%
\newpage%
\else
\fi}
%%%%% hyperref %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue!50!black,linkcolor=blue!50!black,urlcolor=blue!50!black]{hyperref}

View File

@ -4,3 +4,4 @@
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology Lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\hr

View File

@ -2,7 +2,7 @@
\title{\textbf{\huge\sffamily\tr{Introduction to\\[1ex] Scientific Computing}%
{Einf\"uhrung in die\\[1ex] wissenschaftliche Datenverarbeitung}}}
\author{{\LARGE Jan Grewe \& Jan Benda}\\[5ex]Abteilung Neuroethologie\\[2ex]%
\author{{\LARGE Jan Grewe \& Jan Benda}\\[5ex]Neuroethology Lab\\[2ex]%
\includegraphics[width=0.3\textwidth]{UT_WBMW_Rot_RGB}\vspace{3ex}}
\date{WS 2020/2021\\\vfill%
@ -77,7 +77,7 @@
\setcounter{totalnumber}{2}
% float placement fractions:
\renewcommand{\textfraction}{0.2}
\renewcommand{\textfraction}{0.1}
\renewcommand{\topfraction}{0.9}
\renewcommand{\bottomfraction}{0.0}
\renewcommand{\floatpagefraction}{0.7}
@ -209,6 +209,21 @@
\let\l@lstlisting\l@figure
\makeatother
% \lstinputlisting wrapped in a minipage to avoid page breaks:
\newcommand{\pageinputlisting}[2][]{\vspace{-2ex}\noindent\begin{minipage}[t]{1\linewidth}\lstinputlisting[#1]{#2}\end{minipage}}
%%%%% listing environment: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% usage:
%
% \begin{pagelisting}[label=listing1, caption={A script.}]
% >> x = 6
% \end{pagelisting}
%
% This is the lstlisting environment but wrapped in a minipage to avoid page breaks.
\lstnewenvironment{pagelisting}[1][]%
{\vspace{-2ex}\lstset{#1}\noindent\minipage[t]{1\linewidth}}%
{\endminipage}
%%%%% english, german, code and file terms: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{ifthen}
@ -349,11 +364,12 @@
}{%
\immediate\write\solutions{\unexpanded{\subsection}{Exercise \thechapter.\arabic{exercisef}}}%
\immediate\write\solutions{\unexpanded{\label}{solution\arabic{chapter}-\arabic{exercisef}}}%
\immediate\write\solutions{\unexpanded{\lstinputlisting[belowskip=0ex,aboveskip=0ex,%
nolol=true, title={\textbf{Source code:} \protect\StrSubstitute{#1}{_}{\_}}]}{\codepath#1}}%
\immediate\write\solutions{\unexpanded{\begin{minipage}{1\linewidth}\lstinputlisting[belowskip=0ex,aboveskip=0ex,%
nolol=true, title={\textbf{Source code:} \protect\StrSubstitute{#1}{_}{\_}}]}{\codepath#1}\unexpanded{\end{minipage}}}%
\ifthenelse{\equal{#2}{}}{}%
{\immediate\write\solutions{\unexpanded{\lstinputlisting[language={},%
nolol=true, title={\textbf{Output:}}, belowskip=0ex, aboveskip=1ex]}{\codepath#2}}}%
{\immediate\write\solutions{\unexpanded{\begin{minipage}{1\linewidth}\lstinputlisting[language={},%
nolol=true, title={\textbf{Output:}}, belowskip=0ex, aboveskip=1ex]}{\codepath#2}\unexpanded{\end{minipage}}}}%
\immediate\write\solutions{\unexpanded{\vspace*{\fill}}}%
\immediate\write\solutions{}%
}%
}%
@ -362,14 +378,18 @@
{ \hypersetup{hypertexnames=false}%
\ifthenelse{\equal{\exercisesource}{}}{}%
{ \addtocounter{lstlisting}{-1}%
\lstinputlisting[belowskip=0pt,aboveskip=1ex,nolol=true,%
\par\noindent\begin{minipage}[t]{1\linewidth}%
\lstinputlisting[belowskip=1ex,aboveskip=-1ex,nolol=true,%
title={\textbf{Solution:} \exercisefile}]%
{\exercisesource}%
\end{minipage}%
\ifthenelse{\equal{\exerciseoutput}{}}{}%
{ \addtocounter{lstlisting}{-1}%
\par\noindent\begin{minipage}[t]{1\linewidth}%
\lstinputlisting[language={},title={\textbf{Output:}},%
nolol=true,belowskip=0pt]%
nolol=true,belowskip=0pt,aboveskip=-0.5ex]%
{\exerciseoutput}%
\end{minipage}%
}%
}%
\hypersetup{hypertexnames=true}%
@ -452,12 +472,12 @@
{ \captionsetup{singlelinecheck=off,hypcap=false,labelformat={empty},%
labelfont={large,sf,it,bf},font={large,sf,it,bf}}
\ifthenelse{\equal{#1}{}}%
{ \begin{mdframed}[linecolor=importantline,linewidth=1ex,%
{ \begin{mdframed}[nobreak=true,linecolor=importantline,linewidth=1ex,%
backgroundcolor=importantback,font={\sffamily}]%
\setlength{\parindent}{0pt}%
\setlength{\parskip}{1ex}%
}%
{ \begin{mdframed}[linecolor=importantline,linewidth=1ex,%
{ \begin{mdframed}[nobreak=true,linecolor=importantline,linewidth=1ex,%
backgroundcolor=importantback,font={\sffamily},%
frametitle={\captionof{iboxf}{#1}},frametitleaboveskip=-1ex,%
frametitlebackgroundcolor=importantline]%

View File

@ -1,34 +1,3 @@
TEXFILES=$(wildcard exercises??.tex)
EXERCISES=$(TEXFILES:.tex=.pdf)
SOLUTIONS=$(EXERCISES:exercises%=solutions%)
TEXFILES=$(wildcard likelihood-?.tex)
.PHONY: pdf exercises solutions watch watchexercises watchsolutions clean
pdf : $(SOLUTIONS) $(EXERCISES)
exercises : $(EXERCISES)
solutions : $(SOLUTIONS)
$(SOLUTIONS) : solutions%.pdf : exercises%.tex instructions.tex
{ echo "\\documentclass[answers,12pt,a4paper,pdftex]{exam}"; sed -e '1d' $<; } > $(patsubst %.pdf,%.tex,$@)
pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) || true
rm $(patsubst %.pdf,%,$@).[!p]*
$(EXERCISES) : %.pdf : %.tex instructions.tex
pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $< || true
watch :
while true; do ! make -q pdf && make pdf; sleep 0.5; done
watchexercises :
while true; do ! make -q exercises && make exercises; sleep 0.5; done
watchsolutions :
while true; do ! make -q solutions && make solutions; sleep 0.5; done
clean :
rm -f *~ *.aux *.log *.out
cleanup : clean
rm -f $(SOLUTIONS) $(EXERCISES)
include ../../exercises.mk

View File

@ -1,41 +0,0 @@
\vspace*{-8ex}
\begin{center}
\textbf{\Large Introduction to scientific computing}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
% \ifprintanswers%
% \else
% % Die folgenden Aufgaben dienen der Wiederholung, \"Ubung und
% % Selbstkontrolle und sollten eigenst\"andig bearbeitet und gel\"ost
% % werden. Die L\"osung soll in Form eines einzelnen Skriptes (m-files)
% % im ILIAS hochgeladen werden. Jede Aufgabe sollte in einer eigenen
% % ``Zelle'' gel\"ost sein. Die Zellen \textbf{m\"ussen} unabh\"angig
% % voneinander ausf\"uhrbar sein. Das Skript sollte nach dem Muster:
% % ``variablen\_datentypen\_\{nachname\}.m'' benannt werden
% % (z.B. variablen\_datentypen\_mueller.m).
% \begin{itemize}
% \item \"Uberzeuge dich von jeder einzelnen Zeile deines Codes, dass
% sie auch wirklich das macht, was sie machen soll! Teste dies mit
% kleinen Beispielen direkt in der Kommandozeile.
% \item Versuche die L\"osungen der Aufgaben m\"oglichst in
% sinnvolle kleine Funktionen herunterzubrechen.
% Sobald etwas \"ahnliches mehr als einmal berechnet werden soll,
% lohnt es sich eine Funktion daraus zu schreiben!
% \item Teste rechenintensive \code{for} Schleifen, Vektoren, Matrizen
% zuerst mit einer kleinen Anzahl von Wiederholungen oder kleiner
% Gr\"o{\ss}e, und benutze erst am Ende, wenn alles \"uberpr\"uft
% ist, eine gro{\ss}e Anzahl von Wiederholungen oder Elementen, um eine gute
% Statistik zu bekommen.
% \item Benutze die Hilfsfunktion von \code{matlab} (\code{help
% commando} oder \code{doc commando}) und das Internet, um
% herauszufinden, wie bestimmte \code{matlab} Funktionen zu verwenden
% sind und was f\"ur M\"oglichkeiten sie bieten.
% Auch zu inhaltlichen Konzepten bietet das Internet oft viele
% Antworten!
% \end{itemize}
% \fi

View File

@ -1,90 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{pslatex}
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: Solutions}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large Exercise 11\stitle}}{{\bfseries\large Maximum likelihood}}{{\bfseries\large January 7th, 2020}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{dsfont}
\newcommand{\naZ}{\mathds{N}}
\newcommand{\gaZ}{\mathds{Z}}
\newcommand{\raZ}{\mathds{Q}}
\newcommand{\reZ}{\mathds{R}}
\newcommand{\reZp}{\mathds{R^+}}
\newcommand{\reZpN}{\mathds{R^+_0}}
\newcommand{\koZ}{\mathds{C}}
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\continue}{\ifprintanswers%
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\continuepage}{\ifprintanswers%
\newpage
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\newsolutionpage}{\ifprintanswers%
\newpage%
\else
\fi}
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qt}[1]{\textbf{#1}\\}
\newcommand{\pref}[1]{(\ref{#1})}
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
\newcommand{\exercisetopic}{Maximum Likelihood}
\newcommand{\exercisenum}{10}
\newcommand{\exercisedate}{January 12th, 2021}
\input{../../exercisesheader}
\firstpagefooter{Prof. Dr. Jan Benda}{}{jan.benda@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{instructions}
\input{../../exercisestitle}
\begin{questions}

View File

@ -33,17 +33,18 @@ colors['white'] = '#FFFFFF'
# general settings for plot styles:
lwthick = 3.0
lwthin = 1.8
edgewidth = 0.0 if xkcd_style else 1.0
mainline = {'linestyle': '-', 'linewidth': lwthick}
minorline = {'linestyle': '-', 'linewidth': lwthin}
largemarker = {'marker': 'o', 'markersize': 9, 'markeredgecolor': colors['white'], 'markeredgewidth': 1}
smallmarker = {'marker': 'o', 'markersize': 6, 'markeredgecolor': colors['white'], 'markeredgewidth': 1}
largemarker = {'marker': 'o', 'markersize': 9, 'markeredgecolor': colors['white'], 'markeredgewidth': edgewidth}
smallmarker = {'marker': 'o', 'markersize': 6, 'markeredgecolor': colors['white'], 'markeredgewidth': edgewidth}
largelinepoints = {'linestyle': '-', 'linewidth': lwthick, 'marker': 'o', 'markersize': 10, 'markeredgecolor': colors['white'], 'markeredgewidth': 1}
smalllinepoints = {'linestyle': '-', 'linewidth': 1.4, 'marker': 'o', 'markersize': 7, 'markeredgecolor': colors['white'], 'markeredgewidth': 1}
filllw = 1.0
filllw = edgewidth
fillec = colors['white']
fillalpha = 0.4
filledge = {'linewidth': filllw, 'joinstyle': 'round'}
if int(mpl.__version__.split('.')[0]) < 2:
if mpl_major < 2:
del filledge['joinstyle']
# helper lines:

View File

@ -0,0 +1,3 @@
TEXFILES=$(wildcard plotting-?.tex)
include ../../exercises.mk

View File

@ -1,17 +1,11 @@
\vspace*{-8ex}
\begin{center}
\textbf{\Large Introduction to scientific computing}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\ifprintanswers%
\else
The exercises are meant for self-monitoring and revision of the
lecture. You should try to solve them on your own. In contrast
to previous exercises, the solutions can not be saved in a single file. Combine the files into a
single zip archive and submit it via ILIAS. Name the archive according
to the pattern: ``plotting\_\{surname\}.zip''.
% \ifprintanswers%
% \else
% % Die folgenden Aufgaben dienen der Wiederholung, \"Ubung und
% % Selbstkontrolle und sollten eigenst\"andig bearbeitet und gel\"ost
@ -43,4 +37,4 @@ to the pattern: ``plotting\_\{surname\}.zip''.
% Antworten!
% \end{itemize}
% \fi
\fi

View File

@ -1,88 +1,18 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{pslatex}
\usepackage[mediumspace,mediumqspace]{SIunits} % \ohm, \micro
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
\newcommand{\exercisetopic}{Plotting}
\newcommand{\exercisenum}{X}
\newcommand{\exercisedate}{December 14th, 2020}
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: Solutions}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large Exercise 7\stitle}}{{\bfseries\large Plotting}}{{\bfseries\large November 20, 2019}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\input{../../exercisesheader}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\firstpagefooter{Dr. Jan Grewe}{}{jan.grewe@uni-tuebingen.de}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{dsfont}
\newcommand{\naZ}{\mathds{N}}
\newcommand{\gaZ}{\mathds{Z}}
\newcommand{\raZ}{\mathds{Q}}
\newcommand{\reZ}{\mathds{R}}
\newcommand{\reZp}{\mathds{R^+}}
\newcommand{\reZpN}{\mathds{R^+_0}}
\newcommand{\koZ}{\mathds{C}}
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\continue}{\ifprintanswers%
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\continuepage}{\ifprintanswers%
\newpage
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\newsolutionpage}{\ifprintanswers%
\newpage%
\else
\fi}
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qt}[1]{\textbf{#1}\\}
\newcommand{\pref}[1]{(\ref{#1})}
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{../../exercisestitle}
\input{instructions}
\begin{questions}

View File

@ -3,7 +3,7 @@
\input{../../header}
\lstset{inputpath=../code}
\graphicspath{{images/}}
\graphicspath{{figures/}}
\typein[\pagenumber]{Number of first page}
\typein[\chapternumber]{Chapter number}

View File

@ -74,20 +74,20 @@ the data was changed or the same kind of plot has to be created for a
number of datasets.
\begin{important}[Why manual editing should be avoided.]
On first glance the manual editing of a figure using tools such as
Corel draw, Illustrator, etc.\,appears much more convenient and less
complex than coding everything into the analysis scripts. This,
however, is not entirely true. What if the figure has to be re-drawn
or updated? Then the editing work starts all over again. Rather,
there is a great risk associated with the manual editing
approach. Axes may be shifted, fonts have not been embedded into the
final document, annotations have been copy pasted between figures
and are not valid. All of these mistakes can be found in
publications and then require an erratum, which is not
desirable. Even if it appears more cumbersome in the beginning one
should always try to create publication-ready figures directly from
the data analysis tool using scripts or functions to properly layout
the plot.
On first glance manual editing of a figure using tools such as
inkscape, Corel draw, Illustrator, etc.\,appears much more
convenient and less complex than coding everything into the analysis
scripts. This, however, is not entirely true. What if the figure has
to be re-drawn or updated, because, for example, you got more data?
Then the editing work starts all over again. In addition, there is a
great risk associated with the manual editing approach. Axes may be
shifted, fonts have not been embedded into the final document,
annotations have been copy-pasted between figures and are not
valid. All of these mistakes can be found in publications and then
require an erratum, which is not desirable. Even if it appears more
cumbersome in the beginning, one should always try to generate
publication-ready figures directly from the data analysis tool using
scripts or functions to properly layout and annotate the plot.
\end{important}
\subsection{Simple plotting}
@ -148,7 +148,7 @@ or the color. For additional options consult the help.
The following listing shows a simple line plot with axis labeling and a title
\lstinputlisting[caption={A simple plot showing a sinewave.},
\pageinputlisting[caption={A simple plot showing a sinewave.},
label=simpleplotlisting]{simple_plot.m}
@ -162,10 +162,10 @@ chosen, and star marker symbols is used. Finally, the name of the
curve is set to \emph{plot 1} which will be displayed in a legend, if
chosen.
\begin{lstlisting}[label=settinglineprops, caption={Setting line properties when calling \varcode{plot}.}]
\begin{pagelisting}[label=settinglineprops, caption={Setting line properties when calling \varcode{plot}.}]
x = 0:0.1:2*pi; y = sin(x); plot( x, y, 'color', 'r', 'linestyle',
':', 'marker', '*', 'linewidth', 1.5, 'displayname', 'plot 1')
\end{lstlisting}
\end{pagelisting}
\begin{important}[Choosing the right color.]
Choosing the perfect color goes a little bit beyond personal
@ -277,7 +277,7 @@ the last one defines the output format (box\,\ref{graphicsformatbox}).
listing\,\ref{niceplotlisting}.}\label{spikedetectionfig}
\end{figure}
\begin{ibox}[t]{\label{graphicsformatbox}File formats for digital artwork.}
\begin{ibox}[tp]{\label{graphicsformatbox}File formats for digital artwork.}
There are two fundamentally different types of formats for digital artwork:
\begin{enumerate}
\item \enterm[bitmap]{Bitmaps} (\determ{Rastergrafik})
@ -322,7 +322,7 @@ the last one defines the output format (box\,\ref{graphicsformatbox}).
efficient.
\end{ibox}
\lstinputlisting[caption={Script for creating the plot shown in
\pageinputlisting[caption={Script for creating the plot shown in
\figref{spikedetectionfig}.},
label=niceplotlisting]{automatic_plot.m}
@ -380,7 +380,7 @@ draw the data. In the example we also provide further arguments to set
the size, color of the dots and specify that they are filled
(listing\,\ref{scatterlisting1}).
\lstinputlisting[caption={Creating a scatter plot with red filled dots.},
\pageinputlisting[caption={Creating a scatter plot with red filled dots.},
label=scatterlisting1, firstline=9, lastline=9]{scatterplot.m}
We could have used plot for this purpose and set the marker to
@ -395,8 +395,7 @@ manipulate the color we need to specify a length(x)-by-3 matrix. For
each dot we provide an individual color (i.e. the RGB triplet in each
row of the color matrix, lines 2-4 in listing\,\ref{scatterlisting2})
\lstinputlisting[caption={Creating a scatter plot with size and color
\pageinputlisting[caption={Creating a scatter plot with size and color
variations. The RGB triplets define the respective color intensity
in a range 0:1. Here, we modify only the red color channel.},
label=scatterlisting2, linerange={15-15, 21-23}]{scatterplot.m}
@ -431,7 +430,7 @@ figures\,\ref{regularsubplotsfig}, \ref{irregularsubplotsfig}).
also below).}\label{regularsubplotsfig}
\end{figure}
\lstinputlisting[caption={Script for creating subplots in a regular
\pageinputlisting[caption={Script for creating subplots in a regular
grid \figref{regularsubplotsfig}.}, label=regularsubplotlisting,
basicstyle=\ttfamily\scriptsize]{regular_subplot.m}
@ -458,7 +457,7 @@ create a grid with larger numbers of columns and rows, and specify the
used cells of the grid by passing a vector as the third argument to
\code{subplot()}.
\lstinputlisting[caption={Script for creating subplots of different
\pageinputlisting[caption={Script for creating subplots of different
sizes \figref{irregularsubplotsfig}.},
label=irregularsubplotslisting,
basicstyle=\ttfamily\scriptsize]{irregular_subplot.m}
@ -516,7 +515,7 @@ its properties. See the \matlab{} help for more information.
listing\,\ref{errorbarlisting} for A and C and listing\,\ref{errorbarlisting2} }\label{errorbarplot}
\end{figure}
\lstinputlisting[caption={Illustrating estimation errors using error bars. Script that
\pageinputlisting[caption={Illustrating estimation errors using error bars. Script that
creates \figref{errorbarplot}. A, B},
label=errorbarlisting, firstline=13, lastline=31,
basicstyle=\ttfamily\scriptsize]{errorbarplot.m}
@ -550,7 +549,7 @@ leading to invisibility and a value of one to complete
opaqueness. Finally, we use the normal plot command to draw a line
connecting the average values (line 12).
\lstinputlisting[caption={Illustrating estimation errors using a shaded area. Script that
\pageinputlisting[caption={Illustrating estimation errors using a shaded area. Script that
creates \figref{errorbarplot} C.}, label=errorbarlisting2,
firstline=33,
basicstyle=\ttfamily\scriptsize]{errorbarplot.m}
@ -575,7 +574,7 @@ listing\,\ref{annotationsplotlisting}. For more options consult the
listing\,\ref{annotationsplotlisting}}\label{annotationsplot}
\end{figure}
\lstinputlisting[caption={Adding annotations to figures. Script that
\pageinputlisting[caption={Adding annotations to figures. Script that
creates \figref{annotationsplot}.},
label=annotationsplotlisting,
basicstyle=\ttfamily\scriptsize]{annotations.m}
@ -632,7 +631,7 @@ Lissajous figure. The basic steps are:
\item Finally, close the file (line 31).
\end{enumerate}
\lstinputlisting[caption={Making animations and saving them as a
\pageinputlisting[caption={Making animations and saving them as a
movie.}, label=animationlisting, firstline=16, lastline=36,
basicstyle=\ttfamily\scriptsize]{movie_example.m}

View File

@ -18,7 +18,7 @@ function [time, rate] = binned_rate(spikes, bin_width, dt, t_max)
rate = zeros(size(time));
h = hist(spikes, bins) ./ bin_width;
for i = 2:length(bins)
rate(round(bins(i - 1) / dt) + 1:round(bins(i) / dt)) = h(i);
rate(round(bins(i-1)/dt) + 1:round(bins(i)/dt)) = h(i);
end
end

View File

@ -10,19 +10,18 @@ function [time, rate] = convolution_rate(spikes, sigma, dt, t_max)
% t_max : the trial duration in seconds.
%
% Returns:
two vectors containing the time and the rate.
% two vectors containing the time and the rate.
time = 0:dt:t_max - dt;
rate = zeros(size(time));
spike_indices = round(spikes / dt);
rate(spike_indices) = 1;
kernel = gaussKernel(sigma, dt);
rate = conv(rate, kernel, 'same');
time = 0:dt:t_max - dt;
rate = zeros(size(time));
spike_indices = round(spikes / dt);
rate(spike_indices) = 1;
kernel = gaussKernel(sigma, dt);
rate = conv(rate, kernel, 'same');
end
function y = gaussKernel(s, step)
x = -4 * s:step:4 * s;
y = exp(-0.5 .* (x ./ s) .^ 2) ./ sqrt(2 * pi) / s;
y = exp(-0.5 .* (x ./ s).^ 2) ./ sqrt(2 * pi) / s;
end

View File

@ -37,8 +37,8 @@ function [counts, bins] = counthist(spikes, w)
% plot:
if nargout == 0
bar( bins, counts );
xlabel( 'counts k' );
ylabel( 'P(k)' );
bar(bins, counts);
xlabel('counts k');
ylabel('P(k)');
end
end

View File

@ -19,6 +19,6 @@ function [time, rate] = instantaneous_rate(spikes, dt, t_max)
spike_indices = [1 round(spikes ./ dt)];
for i = 2:length(spike_indices)
rate(spike_indices(i - 1):spike_indices(i)) = inst_rate(i - 1);
rate(spike_indices(i-1):spike_indices(i)) = inst_rate(i-1);
end
end

View File

@ -13,7 +13,7 @@ function [pdf, centers] = isihist(isis, binwidth)
if nargin < 2
% compute good binwidth:
nperbin = 200; % average number of data points per bin
nperbin = 200; % average number of data points per bin
bins = length(isis)/nperbin; % number of bins
binwidth = max(isis)/bins;
if binwidth < 5e-4 % half a millisecond

View File

@ -5,25 +5,25 @@ function rasterplot(spikes, tmax)
% spikes: a cell array of vectors of spike times in seconds
% tmax: plot spike raster upto tmax seconds
ntrials = length(spikes);
for k = 1:ntrials
times = spikes{k};
times = times(times<tmax);
if tmax < 1.5
times = 1000.0*times; % conversion to ms
ntrials = length(spikes);
for k = 1:ntrials
times = spikes{k};
times = times(times<tmax);
if tmax < 1.5
times = 1000.0*times; % conversion to ms
end
for i = 1:length( times )
line([times(i) times(i)],[k-0.4 k+0.4], 'Color', 'k');
end
end
for i = 1:length( times )
line([times(i) times(i)],[k-0.4 k+0.4], 'Color', 'k');
if tmax < 1.5
xlabel('Time [ms]');
xlim([0.0 1000.0*tmax]);
else
xlabel('Time [s]');
xlim([0.0 tmax]);
end
end
if tmax < 1.5
xlabel('Time [ms]');
xlim([0.0 1000.0*tmax]);
else
xlabel('Time [s]');
xlim([0.0 tmax]);
end
ylabel('Trials');
ylim([0.3 ntrials+0.7 ]);
ylabel('Trials');
ylim([0.3 ntrials+0.7]);
end

View File

@ -1,35 +1,3 @@
BASENAME=pointprocesses
TEXFILES=$(wildcard $(BASENAME)??.tex)
EXERCISES=$(TEXFILES:.tex=.pdf)
SOLUTIONS=$(EXERCISES:pointprocesses%=pointprocesses-solutions%)
TEXFILES=$(wildcard pointprocesses-?.tex)
.PHONY: pdf exercises solutions watch watchexercises watchsolutions clean
pdf : $(SOLUTIONS) $(EXERCISES)
exercises : $(EXERCISES)
solutions : $(SOLUTIONS)
$(SOLUTIONS) : pointprocesses-solutions%.pdf : pointprocesses%.tex instructions.tex
{ echo "\\documentclass[answers,12pt,a4paper,pdftex]{exam}"; sed -e '1d' $<; } > $(patsubst %.pdf,%.tex,$@)
pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) || true
rm $(patsubst %.pdf,%,$@).[!p]*
$(EXERCISES) : %.pdf : %.tex instructions.tex
pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $< || true
watch :
while true; do ! make -q pdf && make pdf; sleep 0.5; done
watchexercises :
while true; do ! make -q exercises && make exercises; sleep 0.5; done
watchsolutions :
while true; do ! make -q solutions && make solutions; sleep 0.5; done
clean :
rm -f *~ *.aux *.log *.out
cleanup : clean
rm -f $(SOLUTIONS) $(EXERCISES)
include ../../exercises.mk

View File

@ -1,90 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{pslatex}
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: Solutions}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large Exercise 12\stitle}}{{\bfseries\large Point processes}}{{\bfseries\large January 14th, 2020}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{dsfont}
\newcommand{\naZ}{\mathds{N}}
\newcommand{\gaZ}{\mathds{Z}}
\newcommand{\raZ}{\mathds{Q}}
\newcommand{\reZ}{\mathds{R}}
\newcommand{\reZp}{\mathds{R^+}}
\newcommand{\reZpN}{\mathds{R^+_0}}
\newcommand{\koZ}{\mathds{C}}
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\continue}{\ifprintanswers%
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\continuepage}{\ifprintanswers%
\newpage
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\newsolutionpage}{\ifprintanswers%
\newpage%
\else
\fi}
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qt}[1]{\textbf{#1}\\}
\newcommand{\pref}[1]{(\ref{#1})}
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
\newcommand{\exercisetopic}{Point Processes}
\newcommand{\exercisenum}{11}
\newcommand{\exercisedate}{January 19th, 2021}
\input{../../exercisesheader}
\firstpagefooter{Prof. Dr. Jan Benda}{}{jan.benda@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{instructions}
\input{../../exercisestitle}
\begin{questions}

View File

@ -1,90 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{pslatex}
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{L\"osungen}
\else
\newcommand{\stitle}{\"Ubung}
\fi
\header{{\bfseries\large \stitle}}{{\bfseries\large Punktprozesse 2}}{{\bfseries\large 27. Oktober, 2015}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{dsfont}
\newcommand{\naZ}{\mathds{N}}
\newcommand{\gaZ}{\mathds{Z}}
\newcommand{\raZ}{\mathds{Q}}
\newcommand{\reZ}{\mathds{R}}
\newcommand{\reZp}{\mathds{R^+}}
\newcommand{\reZpN}{\mathds{R^+_0}}
\newcommand{\koZ}{\mathds{C}}
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\continue}{\ifprintanswers%
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\continuepage}{\ifprintanswers%
\newpage
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\newsolutionpage}{\ifprintanswers%
\newpage%
\else
\fi}
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qt}[1]{\textbf{#1}\\}
\newcommand{\pref}[1]{(\ref{#1})}
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
\newcommand{\exercisetopic}{Point Processes}
\newcommand{\exercisenum}{X2}
\newcommand{\exercisedate}{January 19th, 2021}
\input{../../exercisesheader}
\firstpagefooter{Prof. Dr. Jan Benda}{}{jan.benda@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{instructions}
\input{../../exercisestitle}
\begin{questions}

View File

@ -1,90 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{pslatex}
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: L\"osungen}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large \"Ubung 8\stitle}}{{\bfseries\large Spiketrain Analyse}}{{\bfseries\large 6. Dezember, 2016}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.benda@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{dsfont}
\newcommand{\naZ}{\mathds{N}}
\newcommand{\gaZ}{\mathds{Z}}
\newcommand{\raZ}{\mathds{Q}}
\newcommand{\reZ}{\mathds{R}}
\newcommand{\reZp}{\mathds{R^+}}
\newcommand{\reZpN}{\mathds{R^+_0}}
\newcommand{\koZ}{\mathds{C}}
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\continue}{\ifprintanswers%
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\continuepage}{\ifprintanswers%
\newpage
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\newsolutionpage}{\ifprintanswers%
\newpage%
\else
\fi}
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qt}[1]{\textbf{#1}\\}
\newcommand{\pref}[1]{(\ref{#1})}
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
\newcommand{\exercisetopic}{Point Processes}
\newcommand{\exercisenum}{X3}
\newcommand{\exercisedate}{January 19th, 2021}
\input{../../exercisesheader}
\firstpagefooter{Prof. Dr. Jan Benda}{}{jan.benda@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{instructions}
\input{../../exercisestitle}
\begin{questions}

View File

@ -25,9 +25,9 @@
\item Multitrial firing rates
\item Better explain difference between ISI method and PSTHes. The
latter is dependent on precision of spike times the former not.
\item Choice of bin width for PSTH, kernel width, also in relation sto
\item Choice of bin width for PSTH, kernel width, also in relation to
stimulus time scale
\item Kernle firing rate: discuss different kernel shapes, in
\item Kernel firing rate: discuss different kernel shapes, in
particular causal kernels (gamma, exponential), relation to synaptic
potentials
\end{itemize}

View File

@ -1,7 +1,7 @@
%!PS-Adobe-2.0 EPSF-2.0
%%Title: pointprocessscetchA.tex
%%Creator: gnuplot 4.6 patchlevel 4
%%CreationDate: Tue Oct 27 23:58:04 2020
%%CreationDate: Mon Dec 14 23:59:13 2020
%%DocumentFonts:
%%BoundingBox: 50 50 373 135
%%EndComments
@ -433,7 +433,7 @@ SDict begin [
/Author (jan)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Tue Oct 27 23:58:04 2020)
/CreationDate (Mon Dec 14 23:59:13 2020)
/DOCINFO pdfmark
end
} ifelse

View File

@ -1,7 +1,7 @@
%!PS-Adobe-2.0 EPSF-2.0
%%Title: pointprocessscetchB.tex
%%Creator: gnuplot 4.6 patchlevel 4
%%CreationDate: Tue Oct 27 23:58:04 2020
%%CreationDate: Mon Dec 14 23:59:13 2020
%%DocumentFonts:
%%BoundingBox: 50 50 373 237
%%EndComments
@ -433,7 +433,7 @@ SDict begin [
/Author (jan)
% /Producer (gnuplot)
% /Keywords ()
/CreationDate (Tue Oct 27 23:58:04 2020)
/CreationDate (Mon Dec 14 23:59:13 2020)
/DOCINFO pdfmark
end
} ifelse

View File

@ -1,4 +1,5 @@
a = [2 4 6 8 10]; % row vector with five elements
s = size(a) % store the return value of size() in a new variable
s(2) % get the second element of s, i.e. the length along the 2nd dimension
size(a,2) % the shortcut
a = [2 4 6 8 10]; % row vector with five elements
s = size(a) % store the return value of size() in a new variable
s(2) % get the second element of s,
% i.e. the length along the 2nd dimension
size(a, 2) % the shortcut

View File

@ -1,3 +1,3 @@
s = 1 10
ans = 10
ans = 10
s = 1 5
ans = 5
ans = 5

View File

@ -0,0 +1,11 @@
TEXFILES= \
boolean_logical_indexing.tex \
control_flow.tex \
matrices.tex \
scripts_functions.tex \
structs_cells.tex \
variables_types.tex \
vectors_matrices.tex \
vectors.tex
include ../../exercises.mk

View File

@ -1,39 +1,17 @@
\documentclass[12pt, a4paper, pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot} \header{{\bfseries\large Exercise 4
}}{{\bfseries\large Boolean expressions \& logical indexing}}{{\bfseries\large 17. November, 2020}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de} \runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\documentclass[12pt,a4paper,pdftex]{exam}
\newcommand{\exercisetopic}{Logical indexing}
\newcommand{\exercisenum}{4}
\newcommand{\exercisedate}{17. November, 2020}
\input{../../exercisesheader}
\firstpagefooter{Dr. Jan Grewe}{}{jan.grewe@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-6.5ex}
\begin{center}
\textbf{\Large Introduction to scientific computing}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Abteilung Neuroethologie \hfill --- \hfill Institut f\"ur Neurobiologie \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\input{../../exercisestitle}
The exercises are meant for self-monitoring and revision of the
lecture. You should try to solve them on your own. Your solution

View File

@ -1,40 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
\newcommand{\exercisetopic}{Control flow}
\newcommand{\exercisenum}{5}
\newcommand{\exercisedate}{24. November, 2020}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\header{{\bfseries\large Exercise 5}}{{\bfseries\large Control Flow}}{{\bfseries\large 24. November, 2020}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\input{../../exercisesheader}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\firstpagefooter{Dr. Jan Grewe}{}{jan.grewe@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-6.5ex}
\begin{center}
\textbf{\Large Introduction to scientific computing}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethologie \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\input{../../exercisestitle}
The exercises are meant for self-monitoring and revision of the
lecture. You should try to solve them on your own. Your solution

View File

@ -1,40 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\header{{\bfseries\large Exercise 3}}{{\bfseries\large Matrices}}{{\bfseries\large 10. Oktober, 2020}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\renewcommand{\solutiontitle}{\noindent\textbf{Solutions:}\par\noindent}
\newcommand{\exercisetopic}{Matrices}
\newcommand{\exercisenum}{3}
\newcommand{\exercisedate}{22. October, 2019}
\input{../../exercisesheader}
\firstpagefooter{Dr. Jan Grewe}{}{jan.grewe@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-6.5ex}
\begin{center}
\textbf{\Large Introduction to Scientific Computing}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\input{../../exercisestitle}
The exercises are meant for self-monitoring and revision of the
lecture. You should try to solve them on your own. Your solution

View File

@ -1,62 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
%\documentclass[answers,12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\header{{\bfseries\large Exercise 6}}{{\bfseries\large Scripts and functions}}{{\bfseries\large 01. December, 2020}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74 588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
\newcommand{\code}[1]{\texttt{#1}}
\newcommand{\exercisetopic}{Scripts and Functions}
\newcommand{\exercisenum}{6}
\newcommand{\exercisedate}{1. December, 2020}
\input{../../exercisesheader}
\firstpagefooter{Dr. Jan Grewe}{}{jan.grewe@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-6.5ex}
\begin{center}
\textbf{\Large Introduction to Scientific Computing}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\input{../../exercisestitle}
The exercises are meant for self-monitoring and revision of the
lecture. You should try to solve them on your own. In contrast

View File

@ -1,40 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
\newcommand{\exercisetopic}{Structs and Cell Arrays}
\newcommand{\exercisenum}{6}
\newcommand{\exercisedate}{16. October, 2015}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\header{{\bfseries\large \"Ubung 6}}{{\bfseries\large Strukturen und Cell Arrays}}{{\bfseries\large 16. Oktober, 2015}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\input{../../exercisesheader}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\firstpagefooter{Dr. Jan Grewe}{}{jan.grewe@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-6.5ex}
\begin{center}
\textbf{\Large Einf\"uhrung in die wissenschaftliche Datenverarbeitung}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Abteilung Neuroethologie \hfill --- \hfill Institut f\"ur Neurobiologie \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\input{../../exercisestitle}
Die folgenden Aufgaben dienen der Wiederholung, \"Ubung und
Selbstkontrolle und sollten eigenst\"andig bearbeitet und gel\"ost

View File

@ -1,41 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[english]{babel}
\usepackage{natbib}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{lipsum}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\header{{\bfseries\large Exercise 1}}{{\bfseries\large Variables und Datatypes}}{{\bfseries\large 03. November, 2020}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\renewcommand{\solutiontitle}{\noindent\textbf{Solutions:}\par\noindent}
\newcommand{\exercisetopic}{Variables und Datatypes}
\newcommand{\exercisenum}{1}
\newcommand{\exercisedate}{3. November, 2020}
\input{../../exercisesheader}
\firstpagefooter{Dr. Jan Grewe}{}{jan.grewe@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-6.5ex}
\begin{center}
\textbf{\Large Introduction to Scientific Computing}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\input{../../exercisestitle}
The exercises are meant for self-monitoring and revision of the
lecture. You should try to solve them on your own. Your solution

View File

@ -1,40 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
\newcommand{\exercisetopic}{Vectors}
\newcommand{\exercisenum}{2}
\newcommand{\exercisedate}{3. November, 2020}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\header{{\bfseries\large Exercise 2}}{{\bfseries\large Vectors}}{{\bfseries\large 03. November, 2020}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\input{../../exercisesheader}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\renewcommand{\solutiontitle}{\noindent\textbf{Solutions:}\par\noindent}
\firstpagefooter{Dr. Jan Grewe}{}{jan.grewe@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-6.5ex}
\begin{center}
\textbf{\Large Introduction to Scientific Computing}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\input{../../exercisestitle}
The exercises are meant for self-monitoring and revision of the
lecture. You should try to solve them on your own. Your solution

View File

@ -1,40 +1,17 @@
\documentclass[12pt,a4paper,pdftex, answers]{exam}
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
\newcommand{\exercisetopic}{Vectors}
\newcommand{\exercisenum}{2}
\newcommand{\exercisedate}{3. November, 2020}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\header{{\bfseries\large Exercise 2}}{{\bfseries\large Vectors}}{{\bfseries\large 03. November, 2020}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\input{../../exercisesheader}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\renewcommand{\solutiontitle}{\noindent\textbf{Solutions:}\par\noindent}
\firstpagefooter{Dr. Jan Grewe}{}{jan.grewe@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-6.5ex}
\begin{center}
\textbf{\Large Introduction to Scientific Computing}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\input{../../exercisestitle}
The exercises are meant for self-monitoring and revision of the lecture
topic. You should try to solve them on your own. Your solution should

View File

@ -60,7 +60,8 @@ variable.
In \matlab{} variables can be created at any time on the command line
or any place in a script or function. Listing~\ref{varListing1} shows
three different ways of creating a variable:
\begin{lstlisting}[label=varListing1, caption={Creating variables.}]
\begin{pagelisting}[label=varListing1, caption={Creating variables.}]
>> x = 38
x =
38
@ -72,7 +73,7 @@ y =
>> z = 'A'
z =
A
\end{lstlisting}
\end{pagelisting}
Line 1 can be read like: ``Create a variable with the name \varcode{x}
and assign the value 38''. The equality sign is the so called
@ -93,8 +94,7 @@ information but it is not suited to be used in programs (see
also the \code{who} function that returns a list of all defined
variables, listing~\ref{varListing2}).
\newpage
\begin{lstlisting}[label=varListing2, caption={Requesting information about defined variables and their types.}]
\begin{pagelisting}[label=varListing2, caption={Requesting information about defined variables and their types.}]
>>class(x)
ans =
double
@ -110,7 +110,7 @@ x y z
x 1x1 8 double
y 0x0 0 double
z 1x1 2 char
\end{lstlisting}
\end{pagelisting}
\begin{important}[Naming conventions]
There are a few rules regarding variable names. \matlab{} is
@ -120,7 +120,6 @@ x y z
variable names.
\end{important}
\pagebreak[4]
\subsection{Working with variables}
We can certainly work, i.e. do calculations, with variables. \matlab{}
knows all basic \entermde[Operator!arithmetic]{Operator!arithmetischer}{arithmetic operators}
@ -131,7 +130,7 @@ such as \code[Operator!arithmetic!1add@+]{+},
\code[Operator!arithmetic!5pow@\^{}]{\^{}}. Listing~\ref{varListing3}
shows their use.
\begin{lstlisting}[label=varListing3, caption={Working with variables.}]
\begin{pagelisting}[label=varListing3, caption={Working with variables.}]
>> x = 1;
>> x + 10
ans =
@ -149,13 +148,12 @@ ans =
z =
3
>> z = z * 5;
>> z
>> z = z * 5
z =
15
>> clear z % deleting a variable
\end{lstlisting}
\end{pagelisting}
Note: in lines 2 and 10 the variables have been used without changing
their values. Whenever the value of a variable should change, the
@ -272,8 +270,8 @@ step-sizes unequal to 1. Line 5 can be read like: ``Create a variable
\varcode{b} and assign the values from 0 to 9 in increasing steps of
1.''. Line 9 reads: ``Create a variable \varcode{c} and assign the
values from 0 to 10 in steps of 2''.
\pagebreak
\begin{lstlisting}[label=generatevectorslisting, caption={Creating simple row-vectors.}]
\begin{pagelisting}[label=generatevectorslisting, caption={Creating simple row-vectors.}]
>> a = [0 1 2 3 4 5 6 7 8 9] % Creating a row-vector
a =
0 1 2 3 4 5 6 7 8 9
@ -285,7 +283,7 @@ b =
>> c = (0:2:10)
c =
0 2 4 6 8 10
\end{lstlisting}
\end{pagelisting}
The length of a vector, that is the number of elements, can be
requested using the \code{length()} or \code{numel()}
@ -293,14 +291,14 @@ functions. \code{size()} provides the same information in a slightly,
yet more powerful way (listing~\ref{vectorsizeslisting}). The above
used vector \varcode{a} has the following size:
\begin{lstlisting}[label=vectorsizeslisting, caption={Size of a vector.}]
\begin{pagelisting}[label=vectorsizeslisting, caption={Size of a vector.}]
>> length(a)
ans =
10
>> size(a)
ans =
1 10
\end{lstlisting}
\end{pagelisting}
The answer provided by the \code{size()} function demonstrates that
vectors are nothing else but 2-dimensional matrices in which one
@ -311,7 +309,7 @@ create a column-vector and how the \code[Operator!Matrix!']{'} ---
operator is used to transpose the column-vector into a row-vector
(lines 14 and following).
\begin{lstlisting}[label=columnvectorlisting, caption={Column-vectors.}]
\begin{pagelisting}[label=columnvectorlisting, caption={Column-vectors.}]
>> b = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] % Creating a column-vector
b =
1
@ -334,7 +332,7 @@ b =
>> size(b)
ans =
1 10
\end{lstlisting}
\end{pagelisting}
\subsubsection{Accessing elements of a vector}
@ -355,7 +353,7 @@ number of elements irrespective of the type of vector.
Elements of a vector are accessed via their index. This process is
called \entermde{Indizierung}{indexing}.
In \matlab{} the first element has the index one.
In \matlab{} the first element in a vector has the index one.
The last element's index equals the length of the vector.
\end{important}
@ -366,25 +364,25 @@ individual values by providing a single index or use the
\code[Operator!Matrix!:]{:} operator to access multiple values with a
single command (see also the info box below \ref{important:colon_operator}).
\begin{lstlisting}[label=vectorelementslisting, caption={Access to individual elements of a vector.}]
>> a = (11:20)
\begin{pagelisting}[label=vectorelementslisting, caption={Access to individual elements of a vector.}]
>> a = (11:20) % generate a vector
a =
11 12 13 14 15 16 17 18 19 20
>> a(1) % the 1. element
>> a(1) % the 1. element
ans = 11
>> a(5) % the 5. element
>> a(5) % the 5. element
ans = 15
>> a(end) % the last element
>> a(end) % the last element
ans = 20
\end{lstlisting}
\end{pagelisting}
\begin{lstlisting}[caption={Access to multiple elements.}, label=vectorrangelisting]
\begin{pagelisting}[caption={Access to multiple elements.}, label=vectorrangelisting]
>> a([1 3 5]) % 1., 3. and 5. element
ans =
11 13 15
>> a(2:4) % all elements with the indices 2 to 4
>> a(2:4) % elements at indices 2 to 4
ans =
12 13 14
@ -395,7 +393,7 @@ ans =
>> a(:) % all elements as row-vector
ans =
11 12 13 14 15 16 17 18 19 20
\end{lstlisting}
\end{pagelisting}
\begin{exercise}{vectorsize.m}{vectorsize.out}
Create a row-vector \varcode{a} with 5 elements. The return value of
@ -425,7 +423,7 @@ how vectors and scalars can be combined with the operators \code[Operator!arithm
\code[Operator!arithmetic!4div@/]{/}
\code[Operator!arithmetic!5powe@.\^{}]{.\^}.
\begin{lstlisting}[caption={Calculating with vectors and scalars.},label=vectorscalarlisting]
\begin{pagelisting}[caption={Calculations with vectors and scalars.},label=vectorscalarlisting]
>> a = (0:2:8)
a =
0 2 4 6 8
@ -449,7 +447,7 @@ ans =
>> a .^ 2 % exponentiation
ans =
0 4 16 36 64
\end{lstlisting}
\end{pagelisting}
When doing calculations with scalars and vectors the same mathematical
operation is done to each element of the vector. In case of, e.g. an
@ -462,7 +460,7 @@ element-wise operations of two vectors, e.g. each element of vector
layout (row- or column vectors). Addition and subtraction are always
element-wise (listing~\ref{vectoradditionlisting}).
\begin{lstlisting}[caption={Element-wise addition and subtraction of two vectors.},label=vectoradditionlisting]
\begin{pagelisting}[caption={Element-wise addition and subtraction of two vectors.},label=vectoradditionlisting]
>> a = [4 9 12];
>> b = [4 3 2];
>> a + b % addition
@ -481,7 +479,7 @@ Matrix dimensions must agree.
>> a + d % both vectors must have the same layout!
Error using +
Matrix dimensions must agree.
\end{lstlisting}
\end{pagelisting}
Element-wise multiplication, division, or raising a vector to a given power requires a
different operator with a preceding '.'. \matlab{} defines the
@ -491,7 +489,7 @@ following operators for element-wise operations on vectors
\code[Operator!arithmetic!5powe@.\^{}]{.\^{}}
(listing~\ref{vectorelemmultiplicationlisting}).
\begin{lstlisting}[caption={Element-wise multiplication, division and
\begin{pagelisting}[caption={Element-wise multiplication, division and
exponentiation of two vectors.},label=vectorelemmultiplicationlisting]
>> a .* b % element-wise multiplication
ans =
@ -511,7 +509,7 @@ Matrix dimensions must agree.
>> a .* d % Both vectors must have the same layout!
Error using .*
Matrix dimensions must agree.
\end{lstlisting}
\end{pagelisting}
The simple operators \code[Operator!arithmetic!3mul@*]{*},
\code[Operator!arithmetic!4div@/]{/} and
@ -521,7 +519,7 @@ matrix-operations known from linear algebra (Box~
of a row-vectors $\vec a$ with a column-vector $\vec b$ the
scalar-poduct (or dot-product) $\sum_i = a_i b_i$.
\begin{lstlisting}[caption={Multiplication of vectors.},label=vectormultiplicationlisting]
\begin{pagelisting}[caption={Multiplication of vectors.},label=vectormultiplicationlisting]
>> a * b % multiplication of two vectors
Error using *
Inner matrix dimensions must agree.
@ -538,14 +536,13 @@ ans =
16 12 8
36 27 18
48 36 24
\end{lstlisting}
\pagebreak[4]
\end{pagelisting}
To remove elements from a vector an empty value
(\code[Operator!Matrix!{[]}]{[]}) is assigned to the respective
elements:
\begin{lstlisting}[label=vectoreraselisting, caption={Deleting elements of a vector.}]
\begin{pagelisting}[label=vectoreraselisting, caption={Deleting elements of a vector.}]
>> a = (0:2:8);
>> length(a)
ans = 5
@ -558,7 +555,7 @@ a = 4 8
>> length(a)
ans = 2
\end{lstlisting}
\end{pagelisting}
In addition to deleting of vector elements one also add new elements
or concatenate two vectors. When performing a concatenation the two
@ -720,7 +717,7 @@ remapping, but can be really helpful
rows in each column and so on.}\label{matrixlinearindexingfig}
\end{figure}
\begin{lstlisting}[label=matrixLinearIndexing, caption={Lineares indexing in matrices.}]
\begin{pagelisting}[label=matrixLinearIndexing, caption={Lineares indexing in matrices.}]
>> x = randi(100, [3, 4, 5]); % 3-D matrix filled with random numbers
>> size(x)
ans =
@ -737,17 +734,17 @@ ans =
>> min(x(:)) % or even simpler
ans =
4
\end{lstlisting}
\end{pagelisting}
\matlab{} defines functions that convert subscript indices to linear indices and back (\code{sub2ind()} and \code{ind2sub()}).
\begin{ibox}[tp]{\label{matrixmultiplication} The matrix--multiplication.}
\begin{ibox}[t]{\label{matrixmultiplication} The matrix--multiplication.}
The matrix--multiplication from linear algebra is \textbf{not} an
element--wise multiplication of each element in a matrix \varcode{A}
and the respective element of matrix \varcode{B}. It is something
completely different. Confusing element--wise and
matrix--multiplication is one of the most common mistakes in
\matlab{}. \linebreak
\matlab{}.
The matrix--multiplication of two 2-D matrices is only possible if
the number of columns in the first matrix agrees with the number of
@ -797,8 +794,7 @@ box~\ref{matrixmultiplication}). To do a matrix-multiplication the
inner dimensions of the matrices must agree
(box~\ref{matrixmultiplication}).
\pagebreak[4]
\begin{lstlisting}[label=matrixOperations, caption={Two kinds of multiplications of matrices.}]
\begin{pagelisting}[label=matrixOperations, caption={Two kinds of multiplications of matrices.}]
>> A = randi(5, [2, 3]) % 2-D matrix
A =
1 5 3
@ -824,7 +820,7 @@ ans =
10 15 20
24 23 35
16 17 25
\end{lstlisting}
\end{pagelisting}
\section{Boolean expressions}
@ -856,7 +852,7 @@ synonymous for the logical values 1 and
0. Listing~\ref{logicaldatatype} exemplifies the use of the logical
data type.
\begin{lstlisting}[caption={The logical data type. Please note that the actual \matlab{} output looks a little different.}, label=logicaldatatype]
\begin{pagelisting}[caption={The logical data type. Please note that the actual \matlab{} output looks a little different.}, label=logicaldatatype]
>> true
ans = 1
>> false
@ -873,7 +869,7 @@ ans = 0
ans = 1 1 1 1
>> logical([1 2 3 4 0 0 10])
ans = 1 1 1 1 0 0 1
\end{lstlisting}
\end{pagelisting}
\varcode{true} and \varcode{false} are reserved keywords that evaluate
to the logical values 1 and 0, respectively. If you want to create a
@ -886,7 +882,7 @@ code of each character in ``test'' is non-zero value, thus, the result
of casting it to logical is a vector of logicals. A similar thing
happens upon casting a vector (or matrix) of numbers to logical. Each
value is converted to logical and the result is true for all non-zero
values (line 21).
values (line 15).
Knowing how to represent true and false values in \matlab{} using the
logical data type allows us to take a step towards more complex
@ -924,8 +920,8 @@ stored in variable \varcode{b}?''.
The result of such questions is then given as a logical
value. Listing~\ref{relationaloperationslisting} shows examples using relational operators.
\pagebreak
\begin{lstlisting}[caption={Relational Boolean expressions.}, label=relationaloperationslisting]
\begin{pagelisting}[caption={Relational Boolean expressions.}, label=relationaloperationslisting]
>> true == logical(1)
ans = 1
>> false ~= logical(1)
@ -943,7 +939,7 @@ ans = 0 0 1 0 0
ans = 0 1 0 0 1
>> [2 0 0 5 0] >= [1 0 3 2 0]
ans = 1 1 0 1 1
\end{lstlisting}
\end{pagelisting}
Testing the relations between numbers and scalar variables is straight
forward. When comparing vectors, the relational operator will be
@ -1040,7 +1036,7 @@ for implementing such
expressions. Listing~\ref{logicaloperatorlisting} shows a few
examples and respective illustrations are shown in figure~\ref{logicaloperationsfig}.
\begin{lstlisting}[caption={Boolean expressions.}, label=logicaloperatorlisting]
\begin{pagelisting}[caption={Boolean expressions.}, label=logicaloperatorlisting]
>> x = rand(1) % create a single random number in the range [0, 1]
x = 0.3452
>> x > 0.25 & x < 0.75
@ -1051,7 +1047,7 @@ x = 0.4920, 0.9106, 0.7218, 0.8749, 0.1574, 0.0201, 0.9107, 0.8357, 0.0357, 0.47
ans = 1 0 1 0 0 0 0 0 0 1
>> x < 0.25 | x > 0.75
ans = 0 1 0 1 1 1 1 1 1 0
\end{lstlisting}
\end{pagelisting}
\begin{figure}[ht]
\includegraphics[]{logical_operations}
@ -1066,7 +1062,6 @@ ans = 0 1 0 1 1 1 1 1 1 0
data.}\label{logicaloperationsfig}
\end{figure}
\pagebreak
\begin{important}[Assignment and equality operators]
The assignment operator \code[Operator!Assignment!=]{=} and the
relational equality operator \code[Operator!relational!==]{==} are
@ -1095,7 +1090,7 @@ elements of \varcode{x} where the Boolean expression \varcode{x < 0}
evaluates to true and store the result in the variable
\varcode{x\_smaller\_zero}''.
\begin{lstlisting}[caption={Logical indexing.}, label=logicalindexing1]
\begin{pagelisting}[caption={Logical indexing.}, label=logicalindexing1]
>> x = randn(1, 6) % a vector with 6 random numbers
x =
-1.4023 -1.4224 0.4882 -0.1774 -0.1961 1.4193
@ -1112,7 +1107,7 @@ elements_smaller_zero =
>> elements_smaller_zero = x(x < 0)
elements_smaller_zero =
-1.4023 -1.4224 -0.1774 -0.1961
\end{lstlisting}
\end{pagelisting}
\begin{exercise}{logicalVector.m}{logicalVector.out}
Create a vector \varcode{x} containing the values 0--10.
@ -1121,8 +1116,7 @@ elements_smaller_zero =
\item Display the content of \varcode{y} in the command window.
\item What is the data type of \varcode{y}?
\item Return only those elements \varcode{x} that are less than 5.
\end{enumerate}
\pagebreak[4]
\end{enumerate}\vspace{-1ex}
\end{exercise}
\begin{figure}[t]
@ -1144,7 +1138,6 @@ segment of data of a certain time span (the stimulus was on,
\begin{exercise}{logicalIndexingTime.m}{}
Assume that measurements have been made for a certain time. Usually
measured values and the time are stored in two vectors.
\begin{itemize}
\item Create a vector that represents the recording time \varcode{t
= 0:0.001:10;}.
@ -1152,9 +1145,9 @@ segment of data of a certain time span (the stimulus was on,
that has the same length as \varcode{t}. The values stored in
\varcode{x} represent the measured data at the times in
\varcode{t}.
\item Use logical indexing to select those values that have been
recorded in the time span from 5--6\,s.
\end{itemize}
\item Use logical indexing to select values that have been
recorded in the time span 5--6\,s.
\end{itemize}\vspace{-1ex}
\end{exercise}
\begin{ibox}[!ht]{\label{advancedtypesbox}Advanced data types}
@ -1276,7 +1269,7 @@ As the name already suggests loops are used to execute the same parts
of the code repeatedly. In one of the earlier exercises the factorial of
five has been calculated as depicted in listing~\ref{facultylisting}.
\begin{lstlisting}[caption={Calculation of the factorial of 5 in five steps}, label=facultylisting]
\begin{pagelisting}[caption={Calculation of the factorial of 5 in five steps}, label=facultylisting]
>> x = 1;
>> x = x * 2;
>> x = x * 3;
@ -1285,7 +1278,7 @@ five has been calculated as depicted in listing~\ref{facultylisting}.
>> x
x =
120
\end{lstlisting}
\end{pagelisting}
This kind of program solves the taks but it is rather repetitive. The only
thing that changes is the increasing factor. The repetition of such
@ -1325,7 +1318,7 @@ a certain purpose. The \varcode{for}-loop is closed with the keyword
\code{end}. Listing~\ref{looplisting} shows a simple version of such a
for-loop.
\begin{lstlisting}[caption={Example of a \varcode{for}-loop.}, label=looplisting]
\begin{pagelisting}[caption={Example of a \varcode{for}-loop.}, label=looplisting]
>> for x = 1:3 % head
disp(x) % body
end
@ -1334,7 +1327,7 @@ for-loop.
1
2
3
\end{lstlisting}
\end{pagelisting}
\begin{exercise}{factorialLoop.m}{factorialLoop.out}
@ -1354,11 +1347,11 @@ keyword \code{while} that is followed by a Boolean expression. If this
can be evaluated to true, the code in the body is executed. The loop
is closed with an \code{end}.
\begin{lstlisting}[caption={Basic structure of a \varcode{while} loop.}, label=whileloop]
while x == true % head with a Boolean expression
\begin{pagelisting}[caption={Basic structure of a \varcode{while} loop.}, label=whileloop]
while x == true % head with a Boolean expression
% execute this code if the expression yields true
end
\end{lstlisting}
\end{pagelisting}
\begin{exercise}{factorialWhileLoop.m}{}
Implement the factorial of a number \varcode{n} using a \varcode{while}-loop.
@ -1413,7 +1406,7 @@ expression to provide a default case. The last body of the
\varcode{if} - \varcode{elseif} - \varcode{else} statement has to be
finished with the \code{end} (listing~\ref{ifelselisting}).
\begin{lstlisting}[label=ifelselisting, caption={Structure of an \varcode{if} statement.}]
\begin{pagelisting}[label=ifelselisting, caption={Structure of an \varcode{if} statement.}]
if x < y % head
% body I, executed only if x < y
elseif x > y
@ -1421,7 +1414,7 @@ elseif x > y
else
% body III, executed only if the previous conditions did not match
end
\end{lstlisting}
\end{pagelisting}
\begin{exercise}{ifelse.m}{}
Draw a random number and check with an appropriate \varcode{if}
@ -1449,7 +1442,7 @@ that were not explicitly stated above (listing~\ref{switchlisting}).
As usual the \code{switch} statement needs to be closed with an
\code{end}.
\begin{lstlisting}[label=switchlisting, caption={Structure of a \varcode{switch} statement.}]
\begin{pagelisting}[label=switchlisting, caption={Structure of a \varcode{switch} statement.}]
mynumber = input('Enter a number:');
switch mynumber
case -1
@ -1459,7 +1452,7 @@ switch mynumber
otherwise
disp('something else');
end
\end{lstlisting}
\end{pagelisting}
\subsubsection{Comparison \varcode{if} and \varcode{switch} -- statements}
@ -1483,7 +1476,7 @@ skip the execution of the body under certain circumstances, one can
use the keywords \code{break} and \code{continue}
(listings~\ref{continuelisting} and \ref{continuelisting}).
\begin{lstlisting}[caption={Stop the execution of a loop using \varcode{break}.}, label=breaklisting]
\begin{pagelisting}[caption={Stop the execution of a loop using \varcode{break}.}, label=breaklisting]
>> x = 1;
while true
if (x > 3)
@ -1496,9 +1489,9 @@ use the keywords \code{break} and \code{continue}
1
2
3
\end{lstlisting}
\end{pagelisting}
\begin{lstlisting}[caption={Skipping iterations using \varcode{continue}.}, label=continuelisting]
\begin{pagelisting}[caption={Skipping iterations using \varcode{continue}.}, label=continuelisting]
for x = 1:5
if(x > 2 & x < 5)
continue;
@ -1509,7 +1502,7 @@ end
1
2
5
\end{lstlisting}
\end{pagelisting}
\begin{exercise}{logicalIndexingBenchmark.m}{logicalIndexingBenchmark.out}
Above we claimed that logical indexing is faster and much more
@ -1581,11 +1574,11 @@ has one \entermde{Argument}{argument} $x$ that is transformed into the
function's output value $y$. In \matlab{} the syntax of a function
declaration is very similar (listing~\ref{functiondefinitionlisting}).
\begin{lstlisting}[caption={Declaration of a function in \matlab{}}, label=functiondefinitionlisting]
\begin{pagelisting}[caption={Declaration of a function in \matlab{}}, label=functiondefinitionlisting]
function [y] = functionName(arg_1, arg_2)
% ^ ^ ^
% return value argument_1, argument_2
\end{lstlisting}
\end{pagelisting}
The keyword \code{function} is followed by the return value(s) (it can
be a list \varcode{[]} of values), the function name and the
@ -1618,7 +1611,7 @@ The following listing (\ref{badsinewavelisting}) shows a function that
calculates and displays a bunch of sine waves with different amplitudes.
\begin{lstlisting}[caption={Bad example of a function that displays a series of sine waves.},label=badsinewavelisting]
\begin{pagelisting}[caption={Bad example of a function that displays a series of sine waves.},label=badsinewavelisting]
function myFirstFunction() % function head
t = (0:0.01:2);
frequency = 1.0;
@ -1629,7 +1622,7 @@ function myFirstFunction() % function head
hold on;
end
end
\end{lstlisting}
\end{pagelisting}
\varcode{myFirstFunction} (listing~\ref{badsinewavelisting}) is a
prime-example of a bad function. There are several issues with it's
@ -1690,7 +1683,7 @@ define (i) how to name the function, (ii) which information it needs
Having defined this we can start coding
(listing~\ref{sinefunctionlisting}).
\begin{lstlisting}[caption={Function that calculates a sine wave.}, label=sinefunctionlisting]
\begin{pagelisting}[caption={Function that calculates a sine wave.}, label=sinefunctionlisting]
function [time, sine] = sinewave(frequency, amplitude, t_max, t_step)
% Calculate a sinewave of a given frequency, amplitude,
% duration and temporal resolution.
@ -1708,7 +1701,7 @@ function [time, sine] = sinewave(frequency, amplitude, t_max, t_step)
time = (0:t_step:t_max);
sine = sin(frequency .* time .* 2 .* pi) .* amplitude;
end
\end{lstlisting}
\end{pagelisting}
\paragraph{II. Plotting a single sine wave}
@ -1735,7 +1728,7 @@ specification of the function:
With this specification we can start to implement the function
(listing~\ref{sineplotfunctionlisting}).
\begin{lstlisting}[caption={Function for the graphical display of data.}, label=sineplotfunctionlisting]
\begin{pagelisting}[caption={Function for the graphical display of data.}, label=sineplotfunctionlisting]
function plotFunction(x_data, y_data, name)
% Plots x-data against y-data and sets the display name.
%
@ -1747,7 +1740,7 @@ function plotFunction(x_data, y_data, name)
% name : the displayname
plot(x_data, y_data, 'displayname', name)
end
\end{lstlisting}
\end{pagelisting}
\begin{ibox}[!ht]{\label{box:sprintf}\enterm[Format strings]{Formatted strings} with \mcode{sprintf}.}
We can use \varcode{disp} to dispaly the content of a variable on the command line. But how can we embed variable contents nicely into a text and store it in a variable or show it on the command line? \varcode{sprintf} is the standard function to achieve this. We introduce only a fraction of its real might here. For a more complete description visit the \matlab{} help or e.g. \url{https://en.wikipedia.org/wiki/Printf_format_string}.
@ -1820,11 +1813,11 @@ for i = 1:length(amplitudes)
end
hold off
legend('show')
\end{lstlisting}
\end{pagelisting}
\pagebreak[4]
\begin{exercise}{plotMultipleSinewaves.m}{}
Extend the program to plot also a range of frequencies.
\pagebreak[4]
\end{exercise}

View File

@ -1,32 +1,42 @@
% x, y from exercise 8.3
function [p, ps, mses] = gradientDescent(x, y, func, p0, epsilon, threshold)
% Gradient descent for fitting a function to data pairs.
%
% Arguments: x, vector of the x-data values.
% y, vector of the corresponding y-data values.
% func, function handle func(x, p)
% p0, vector with initial parameter values
% epsilon: factor multiplying the gradient.
% threshold: minimum value for gradient
%
% Returns: p, vector with the final parameter values.
% ps: 2D-vector with all the parameter vectors traversed.
% mses: vector with the corresponding mean squared errors
% some arbitrary values for the slope and the intercept to start with:
position = [-2.0, 10.0];
p = p0;
gradient = ones(1, length(p0)) * 1000.0;
ps = [];
mses = [];
while norm(gradient) > threshold
ps = [ps, p(:)];
mses = [mses, meanSquaredError(x, y, func, p)];
gradient = meanSquaredGradient(x, y, func, p);
p = p - epsilon * gradient;
end
end
function mse = meanSquaredError(x, y, func, p)
mse = mean((y - func(x, p)).^2);
end
% gradient descent:
gradient = [];
errors = [];
count = 1;
eps = 0.0001;
while isempty(gradient) || norm(gradient) > 0.1
gradient = meanSquaredGradient(x, y, position);
errors(count) = meanSquaredError(x, y, position);
position = position - eps .* gradient;
count = count + 1;
function gradmse = meanSquaredGradient(x, y, func, p)
gradmse = zeros(size(p, 1), size(p, 2));
h = 1e-7; % stepsize for derivatives
mse = meanSquaredError(x, y, func, p);
for i = 1:length(p) % for each coordinate ...
pi = p;
pi(i) = pi(i) + h; % displace i-th parameter
msepi = meanSquaredError(x, y, func, pi);
gradmse(i) = (msepi - mse)/h;
end
end
figure()
subplot(2,1,1)
hold on
scatter(x, y, 'displayname', 'data')
xx = min(x):0.01:max(x);
yy = position(1).*xx + position(2);
plot(xx, yy, 'displayname', 'fit')
xlabel('Input')
ylabel('Output')
grid on
legend show
subplot(2,1,2)
plot(errors)
xlabel('optimization steps')
ylabel('error')

View File

@ -0,0 +1,25 @@
function [c, cs, mses] = gradientDescentCubic(x, y, c0, epsilon, threshold)
% Gradient descent for fitting a cubic relation.
%
% Arguments: x, vector of the x-data values.
% y, vector of the corresponding y-data values.
% c0, initial value for the parameter c.
% epsilon: factor multiplying the gradient.
% threshold: minimum value for gradient
%
% Returns: c, the final value of the c-parameter.
% cs: vector with all the c-values traversed.
% mses: vector with the corresponding mean squared errors
c = c0;
gradient = 1000.0;
cs = [];
mses = [];
count = 1;
while abs(gradient) > threshold
cs(count) = c;
mses(count) = meanSquaredErrorCubic(x, y, c);
gradient = meanSquaredGradientCubic(x, y, c);
c = c - epsilon * gradient;
count = count + 1;
end
end

View File

@ -1,12 +0,0 @@
function mse = meanSquaredError(x, y, parameter)
% Mean squared error between a straight line and data pairs.
%
% Arguments: x, vector of the input values
% y, vector of the corresponding measured output values
% parameter, vector containing slope and intercept
% as the 1st and 2nd element, respectively.
%
% Returns: mse, the mean-squared-error.
mse = mean((y - x * parameter(1) - parameter(2)).^2);
end

View File

@ -0,0 +1,11 @@
function mse = meanSquaredErrorCubic(x, y, c)
% Mean squared error between data pairs and a cubic relation.
%
% Arguments: x, vector of the x-data values
% y, vector of the corresponding y-data values
% c, the factor for the cubic relation.
%
% Returns: mse, the mean-squared-error.
mse = mean((y - c*x.^3).^2);
end

View File

@ -1 +0,0 @@
mse = mean((y - y_est).^2);

View File

@ -0,0 +1,14 @@
function dmsedc = meanSquaredGradientCubic(x, y, c)
% The gradient of the mean squared error for a cubic relation.
%
% Arguments: x, vector of the x-data values
% y, vector of the corresponding y-data values
% c, the factor for the cubic relation.
%
% Returns: the derivative of the mean squared error at c.
h = 1e-7; % stepsize for derivatives
mse = meanSquaredErrorCubic(x, y, c);
mseh = meanSquaredErrorCubic(x, y, c+h);
dmsedc = (mseh - mse)/h;
end

View File

@ -0,0 +1,15 @@
n = 40;
xmin = 2.2;
xmax = 3.9;
c = 6.0;
noise = 50.0;
% generate data:
x = rand(n, 1) * (xmax-xmin) + xmin;
yest = c * x.^3;
y = yest + noise*randn(n, 1);
% compute mean squared error:
mse = mean((y - yest).^2);
fprintf('the mean squared error is %.0f kg^2\n', mse)

View File

@ -0,0 +1,9 @@
cs = 2.0:0.1:8.0;
mses = zeros(length(cs));
for i = 1:length(cs)
mses(i) = meanSquaredErrorCubic(x, y, cs(i));
end
plot(cs, mses)
xlabel('c')
ylabel('mean squared error')

View File

@ -0,0 +1,11 @@
meansquarederrorline; % generate data
cs = 2.0:0.1:8.0;
mseg = zeros(length(cs));
for i = 1:length(cs)
mseg(i) = meanSquaredGradientCubic(x, y, cs(i));
end
plot(cs, mseg)
xlabel('c')
ylabel('gradient')

View File

@ -0,0 +1,28 @@
meansquarederrorline; % generate data
c0 = 2.0;
eps = 0.00001;
thresh = 1.0;
[cest, cs, mses] = gradientDescentCubic(x, y, c0, eps, thresh);
subplot(2, 2, 1); % top left panel
hold on;
plot(cs, '-o');
plot([1, length(cs)], [c, c], 'k'); % line indicating true c value
hold off;
xlabel('Iteration');
ylabel('C');
subplot(2, 2, 3); % bottom left panel
plot(mses, '-o');
xlabel('Iteration steps');
ylabel('MSE');
subplot(1, 2, 2); % right panel
hold on;
% generate x-values for plottig the fit:
xx = min(x):0.01:max(x);
yy = cest * xx.^3;
plot(xx, yy);
plot(x, y, 'o'); % plot original data
xlabel('Size [m]');
ylabel('Weight [kg]');
legend('fit', 'data', 'location', 'northwest');

View File

@ -0,0 +1,30 @@
meansquarederrorline; % generate data
p0 = [2.0, 1.0];
eps = 0.00001;
thresh = 1.0;
[pest, ps, mses] = gradientDescent(x, y, @powerLaw, p0, eps, thresh);
pest
subplot(2, 2, 1); % top left panel
hold on;
plot(ps(1,:), ps(2,:), '.');
plot(ps(1,end), ps(2,end), 'og');
plot(c, 3.0, 'or'); % dot indicating true parameter values
hold off;
xlabel('Iteration');
ylabel('C');
subplot(2, 2, 3); % bottom left panel
plot(mses, '-o');
xlabel('Iteration steps');
ylabel('MSE');
subplot(1, 2, 2); % right panel
hold on;
% generate x-values for plottig the fit:
xx = min(x):0.01:max(x);
yy = powerLaw(xx, pest);
plot(xx, yy);
plot(x, y, 'o'); % plot original data
xlabel('Size [m]');
ylabel('Weight [kg]');
legend('fit', 'data', 'location', 'northwest');

View File

@ -1,34 +1,4 @@
TEXFILES=$(wildcard exercises??.tex)
EXERCISES=$(TEXFILES:.tex=.pdf)
SOLUTIONS=$(EXERCISES:exercises%=solutions%)
TEXFILES=$(wildcard gradientdescent-?.tex)
.PHONY: pdf exercises solutions watch watchexercises watchsolutions clean
include ../../exercises.mk
pdf : $(SOLUTIONS) $(EXERCISES)
exercises : $(EXERCISES)
solutions : $(SOLUTIONS)
$(SOLUTIONS) : solutions%.pdf : exercises%.tex instructions.tex
{ echo "\\documentclass[answers,12pt,a4paper,pdftex]{exam}"; sed -e '1d' $<; } > $(patsubst %.pdf,%.tex,$@)
pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) || true
rm $(patsubst %.pdf,%,$@).[!p]*
$(EXERCISES) : %.pdf : %.tex instructions.tex
pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $< || true
watch :
while true; do ! make -q pdf && make pdf; sleep 0.5; done
watchexercises :
while true; do ! make -q exercises && make exercises; sleep 0.5; done
watchsolutions :
while true; do ! make -q solutions && make solutions; sleep 0.5; done
clean :
rm -f *~ *.aux *.log *.out
cleanup : clean
rm -f $(SOLUTIONS) $(EXERCISES)

View File

@ -1,60 +1,17 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: Solutions}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large Exercise 10\stitle}}{{\bfseries\large Gradient descent}}{{\bfseries\large December 16th, 2019}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\renewcommand{\solutiontitle}{\noindent\textbf{Solution:}\par\noindent}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
\newcommand{\exercisetopic}{Resampling}
\newcommand{\exercisenum}{9}
\newcommand{\exercisedate}{December 22th, 2020}
\input{../../exercisesheader}
\firstpagefooter{Prof. Dr. Jan Benda}{}{jan.benda@uni-tuebingen.de}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{instructions}
\input{../../exercisestitle}
\begin{questions}
@ -96,7 +53,7 @@
the parameter values at the minimum of the cost function and a vector
with the value of the cost function at each step of the algorithm.
\begin{solution}
\lstinputlisting{../code/descent.m}
\lstinputlisting{descent.m}
\end{solution}
\part Plot the data and the straight line with the parameter
@ -105,7 +62,7 @@
\part Plot the development of the costs as a function of the
iteration step.
\begin{solution}
\lstinputlisting{../code/descentfit.m}
\lstinputlisting{descentfit.m}
\end{solution}
\part For checking the gradient descend method from (a) compare
@ -116,7 +73,7 @@
minimum gradient. What are good values such that the gradient
descent gets closest to the true minimum of the cost function?
\begin{solution}
\lstinputlisting{../code/checkdescent.m}
\lstinputlisting{checkdescent.m}
\end{solution}
\part Use the functions \code{polyfit()} and \code{lsqcurvefit()}
@ -124,7 +81,7 @@
line that fits the data. Compare the resulting fit parameters of
those functions with the ones of your gradient descent algorithm.
\begin{solution}
\lstinputlisting{../code/linefit.m}
\lstinputlisting{linefit.m}
\end{solution}
\end{parts}

View File

@ -1,6 +0,0 @@
\vspace*{-7.8ex}
\begin{center}
\textbf{\Large Introduction to Scientific Computing}\\[2.3ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology Lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}

View File

@ -0,0 +1,82 @@
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mt
from plotstyle import *
def create_data():
# wikipedia:
# Generally, males vary in total length from 250 to 390 cm and
# weigh between 90 and 306 kg
c = 6
x = np.arange(2.2, 3.9, 0.05)
y = c * x**3.0
rng = np.random.RandomState(32281)
noise = rng.randn(len(x))*50
y += noise
return x, y, c
def plot_mse(ax, x, y, c):
ccs = np.linspace(0.5, 10.0, 200)
mses = np.zeros(len(ccs))
for i, cc in enumerate(ccs):
mses[i] = np.mean((y-(cc*x**3.0))**2.0)
imin = np.argmin(mses)
ax.plot(ccs, mses, **lsAm)
ax.plot(c, 500.0, **psB)
ax.plot(ccs[imin], mses[imin], **psC)
ax.annotate('Minimum of\ncost\nfunction',
xy=(ccs[imin], mses[imin]*1.2), xycoords='data',
xytext=(4, 7000), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.2,0.0),
connectionstyle="angle3,angleA=10,angleB=90") )
ax.text(2.2, 500, 'True\nparameter\nvalue')
ax.annotate('', xy=(c-0.2, 500), xycoords='data',
xytext=(4.1, 700), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(1.0,0.0),
connectionstyle="angle3,angleA=-10,angleB=0") )
ax.set_xlabel('c')
ax.set_ylabel('Mean squared error')
ax.set_xlim(2, 8.2)
ax.set_ylim(0, 10000)
ax.set_xticks(np.arange(2.0, 8.1, 2.0))
ax.set_yticks(np.arange(0, 10001, 5000))
def plot_mse_min(ax, x, y, c):
ccs = np.arange(0.5, 10.0, 0.05)
mses = np.zeros(len(ccs))
for i, cc in enumerate(ccs):
mses[i] = np.mean((y-(cc*x**3.0))**2.0)
imin = np.argmin(mses)
di = 25
i0 = 16
dimin = np.argmin(mses[i0::di])*di + i0
ax.plot(c, 500.0, **psB)
ax.plot(ccs, mses, **lsAm)
ax.plot(ccs[i0::di], mses[i0::di], **psAm)
ax.plot(ccs[dimin], mses[dimin], **psD)
#ax.plot(ccs[imin], mses[imin], **psCm)
ax.annotate('Estimated\nminimum of\ncost\nfunction',
xy=(ccs[dimin], mses[dimin]*1.2), xycoords='data',
xytext=(4, 6700), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.8,0.0),
connectionstyle="angle3,angleA=0,angleB=85") )
ax.set_xlabel('c')
ax.set_xlim(2, 8.2)
ax.set_ylim(0, 10000)
ax.set_xticks(np.arange(2.0, 8.1, 2.0))
ax.set_yticks(np.arange(0, 10001, 5000))
ax.yaxis.set_major_formatter(mt.NullFormatter())
if __name__ == "__main__":
x, y, c = create_data()
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=cm_size(figure_width, 1.1*figure_height))
fig.subplots_adjust(**adjust_fs(left=8.0, right=1.2))
plot_mse(ax1, x, y, c)
plot_mse_min(ax2, x, y, c)
fig.savefig("cubiccost.pdf")
plt.close()

View File

@ -15,28 +15,13 @@ def create_data():
return x, y, c
def plot_data(ax, x, y, c):
ax.plot(x, y, zorder=10, **psAm)
xx = np.linspace(2.1, 3.9, 100)
ax.plot(xx, c*xx**3.0, zorder=5, **lsBm)
for cc in [0.25*c, 0.5*c, 2.0*c, 4.0*c]:
ax.plot(xx, cc*xx**3.0, zorder=5, **lsDm)
ax.set_xlabel('Size x', 'm')
ax.set_ylabel('Weight y', 'kg')
ax.set_xlim(2, 4)
ax.set_ylim(0, 400)
ax.set_xticks(np.arange(2.0, 4.1, 0.5))
ax.set_yticks(np.arange(0, 401, 100))
def plot_data_errors(ax, x, y, c):
ax.set_xlabel('Size x', 'm')
#ax.set_ylabel('Weight y', 'kg')
ax.set_ylabel('Weight y', 'kg')
ax.set_xlim(2, 4)
ax.set_ylim(0, 400)
ax.set_xticks(np.arange(2.0, 4.1, 0.5))
ax.set_yticks(np.arange(0, 401, 100))
ax.set_yticklabels([])
ax.annotate('Error',
xy=(x[28]+0.05, y[28]+60), xycoords='data',
xytext=(3.4, 70), textcoords='data', ha='left',
@ -52,31 +37,30 @@ def plot_data_errors(ax, x, y, c):
yy = [c*x[i]**3.0, y[i]]
ax.plot(xx, yy, zorder=5, **lsDm)
def plot_error_hist(ax, x, y, c):
ax.set_xlabel('Squared error')
ax.set_ylabel('Frequency')
bins = np.arange(0.0, 1250.0, 100)
bins = np.arange(0.0, 11000.0, 750)
ax.set_xlim(bins[0], bins[-1])
#ax.set_ylim(0, 35)
ax.set_xticks(np.arange(bins[0], bins[-1], 200))
#ax.set_yticks(np.arange(0, 36, 10))
ax.set_ylim(0, 15)
ax.set_xticks(np.arange(bins[0], bins[-1], 5000))
ax.set_yticks(np.arange(0, 16, 5))
errors = (y-(c*x**3.0))**2.0
mls = np.mean(errors)
ax.annotate('Mean\nsquared\nerror',
xy=(mls, 0.5), xycoords='data',
xytext=(800, 3), textcoords='data', ha='left',
xytext=(4500, 6), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.0,0.2),
connectionstyle="angle3,angleA=10,angleB=90") )
ax.hist(errors, bins, **fsC)
if __name__ == "__main__":
x, y, c = create_data()
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.subplots_adjust(wspace=0.2, **adjust_fs(left=6.0, right=1.2))
plot_data(ax1, x, y, c)
plot_data_errors(ax2, x, y, c)
#plot_error_hist(ax2, x, y, c)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=cm_size(figure_width, 0.9*figure_height))
fig.subplots_adjust(wspace=0.5, **adjust_fs(left=6.0, right=1.2))
plot_data_errors(ax1, x, y, c)
plot_error_hist(ax2, x, y, c)
fig.savefig("cubicerrors.pdf")
plt.close()

View File

@ -2,7 +2,7 @@ import matplotlib.pyplot as plt
import numpy as np
from plotstyle import *
if __name__ == "__main__":
def create_data():
# wikipedia:
# Generally, males vary in total length from 250 to 390 cm and
# weigh between 90 and 306 kg
@ -12,10 +12,20 @@ if __name__ == "__main__":
rng = np.random.RandomState(32281)
noise = rng.randn(len(x))*50
y += noise
return x, y, c
fig, ax = plt.subplots(figsize=cm_size(figure_width, 1.4*figure_height))
fig.subplots_adjust(**adjust_fs(left=6.0, right=1.2))
def plot_data(ax, x, y):
ax.plot(x, y, **psA)
ax.set_xlabel('Size x', 'm')
ax.set_ylabel('Weight y', 'kg')
ax.set_xlim(2, 4)
ax.set_ylim(0, 400)
ax.set_xticks(np.arange(2.0, 4.1, 0.5))
ax.set_yticks(np.arange(0, 401, 100))
def plot_data_fac(ax, x, y, c):
ax.plot(x, y, zorder=10, **psA)
xx = np.linspace(2.1, 3.9, 100)
ax.plot(xx, c*xx**3.0, zorder=5, **lsB)
@ -28,5 +38,13 @@ if __name__ == "__main__":
ax.set_xticks(np.arange(2.0, 4.1, 0.5))
ax.set_yticks(np.arange(0, 401, 100))
if __name__ == "__main__":
x, y, c = create_data()
print('n=%d' % len(x))
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=cm_size(figure_width, 0.9*figure_height))
fig.subplots_adjust(wspace=0.5, **adjust_fs(fig, left=6.0, right=1.2))
plot_data(ax1, x, y)
plot_data_fac(ax2, x, y, c)
fig.savefig("cubicfunc.pdf")
plt.close()

View File

@ -14,6 +14,7 @@ def create_data():
y += noise
return x, y, c
def gradient_descent(x, y):
n = 20
dc = 0.01
@ -30,6 +31,7 @@ def gradient_descent(x, y):
cc -= eps*dmdc
return cs, mses
def plot_mse(ax, x, y, c, cs):
ms = np.zeros(len(cs))
for i, cc in enumerate(cs):
@ -55,6 +57,7 @@ def plot_mse(ax, x, y, c, cs):
ax.set_xticks(np.arange(0.0, 10.1, 2.0))
ax.set_yticks(np.arange(0, 30001, 10000))
def plot_descent(ax, cs, mses):
ax.plot(np.arange(len(mses))+1, mses, **lpsBm)
ax.set_xlabel('Iteration')
@ -69,8 +72,8 @@ def plot_descent(ax, cs, mses):
if __name__ == "__main__":
x, y, c = create_data()
cs, mses = gradient_descent(x, y)
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.subplots_adjust(wspace=0.2, **adjust_fs(left=8.0, right=0.5))
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=cm_size(figure_width, 1.1*figure_height))
fig.subplots_adjust(**adjust_fs(left=8.0, right=1.2))
plot_mse(ax1, x, y, c, cs)
plot_descent(ax2, cs, mses)
fig.savefig("cubicmse.pdf")

View File

@ -1,56 +0,0 @@
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from plotstyle import *
def create_data():
m = 0.75
n= -40
x = np.arange(10.,110., 2.5)
y = m * x + n;
rng = np.random.RandomState(37281)
noise = rng.randn(len(x))*15
y += noise
return x, y, m, n
def plot_error_plane(ax, x, y, m, n):
ax.set_xlabel('Slope m')
ax.set_ylabel('Intercept b')
ax.set_zlabel('Mean squared error')
ax.set_xlim(-4.5, 5.0)
ax.set_ylim(-60.0, -20.0)
ax.set_zlim(0.0, 700.0)
ax.set_xticks(np.arange(-4, 5, 2))
ax.set_yticks(np.arange(-60, -19, 10))
ax.set_zticks(np.arange(0, 700, 200))
ax.grid(True)
ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))
ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))
ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))
ax.invert_xaxis()
ax.view_init(25, 40)
slopes = np.linspace(-4.5, 5, 40)
intercepts = np.linspace(-60, -20, 40)
x, y = np.meshgrid(slopes, intercepts)
error_surf = np.zeros(x.shape)
for i, s in enumerate(slopes) :
for j, b in enumerate(intercepts) :
error_surf[j,i] = np.mean((y-s*x-b)**2.0)
ax.plot_surface(x, y, error_surf, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, shade=True)
# Minimum:
mini = np.unravel_index(np.argmin(error_surf), error_surf.shape)
ax.scatter(slopes[mini[1]], intercepts[mini[0]], [0.0], color='#cc0000', s=60)
if __name__ == "__main__":
x, y, m, n = create_data()
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='3d')
plot_error_plane(ax, x, y, m, n)
fig.set_size_inches(7., 5.)
fig.subplots_adjust(**adjust_fs(fig, 1.0, 0.0, 0.0, 0.0))
fig.savefig("error_surface.pdf")
plt.close()

View File

@ -1,60 +0,0 @@
import numpy as np
import matplotlib.pyplot as plt
from plotstyle import *
def create_data():
m = 0.75
n= -40
x = np.arange(10.,110., 2.5)
y = m * x + n;
rng = np.random.RandomState(37281)
noise = rng.randn(len(x))*15
y += noise
return x, y, m, n
def plot_data(ax, x, y):
ax.plot(x, y, **psA)
ax.set_xlabel('Input x')
ax.set_ylabel('Output y')
ax.set_xlim(0, 120)
ax.set_ylim(-80, 80)
ax.set_xticks(np.arange(0,121, 40))
ax.set_yticks(np.arange(-80,81, 40))
def plot_data_slopes(ax, x, y, m, n):
ax.plot(x, y, **psA)
xx = np.asarray([2, 118])
for i in np.linspace(0.3*m, 2.0*m, 5):
ax.plot(xx, i*xx+n, **lsBm)
ax.set_xlabel('Input x')
#ax.set_ylabel('Output y')
ax.set_xlim(0, 120)
ax.set_ylim(-80, 80)
ax.set_xticks(np.arange(0,121, 40))
ax.set_yticks(np.arange(-80,81, 40))
def plot_data_intercepts(ax, x, y, m, n):
ax.plot(x, y, **psA)
xx = np.asarray([2, 118])
for i in np.linspace(n-1*n, n+1*n, 5):
ax.plot(xx, m*xx + i, **lsBm)
ax.set_xlabel('Input x')
#ax.set_ylabel('Output y')
ax.set_xlim(0, 120)
ax.set_ylim(-80, 80)
ax.set_xticks(np.arange(0,121, 40))
ax.set_yticks(np.arange(-80,81, 40))
if __name__ == "__main__":
x, y, m, n = create_data()
fig, axs = plt.subplots(1, 3)
fig.subplots_adjust(wspace=0.5, **adjust_fs(fig, left=6.0, right=1.5))
plot_data(axs[0], x, y)
plot_data_slopes(axs[1], x, y, m, n)
plot_data_intercepts(axs[2], x, y, m, n)
fig.savefig("lin_regress.pdf")
plt.close()

View File

@ -1,65 +0,0 @@
import numpy as np
import matplotlib.pyplot as plt
from plotstyle import *
def create_data():
m = 0.75
n= -40
x = np.concatenate( (np.arange(10.,110., 2.5), np.arange(0.,120., 2.0)) )
y = m * x + n;
rng = np.random.RandomState(37281)
noise = rng.randn(len(x))*15
y += noise
return x, y, m, n
def plot_data(ax, x, y, m, n):
ax.set_xlabel('Input x')
ax.set_ylabel('Output y')
ax.set_xlim(0, 120)
ax.set_ylim(-80, 80)
ax.set_xticks(np.arange(0,121, 40))
ax.set_yticks(np.arange(-80,81, 40))
ax.annotate('Error',
xy=(x[34]+1, y[34]+15), xycoords='data',
xytext=(80, -50), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.9,1.0),
connectionstyle="angle3,angleA=50,angleB=-30") )
ax.plot(x[:40], y[:40], zorder=0, **psAm)
inxs = [3, 13, 16, 19, 25, 34, 36]
ax.plot(x[inxs], y[inxs], zorder=10, **psA)
xx = np.asarray([2, 118])
ax.plot(xx, m*xx+n, **lsBm)
for i in inxs :
xx = [x[i], x[i]]
yy = [m*x[i]+n, y[i]]
ax.plot(xx, yy, zorder=5, **lsDm)
def plot_error_hist(ax, x, y, m, n):
ax.set_xlabel('Squared error')
ax.set_ylabel('Frequency')
bins = np.arange(0.0, 602.0, 50.0)
ax.set_xlim(bins[0], bins[-1])
ax.set_ylim(0, 35)
ax.set_xticks(np.arange(bins[0], bins[-1], 100))
ax.set_yticks(np.arange(0, 36, 10))
errors = (y-(m*x+n))**2.0
mls = np.mean(errors)
ax.annotate('Mean\nsquared\nerror',
xy=(mls, 0.5), xycoords='data',
xytext=(350, 20), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.0,0.2),
connectionstyle="angle3,angleA=10,angleB=90") )
ax.hist(errors, bins, **fsD)
if __name__ == "__main__":
x, y, m, n = create_data()
fig, axs = plt.subplots(1, 2)
fig.subplots_adjust(**adjust_fs(fig, left=6.0))
plot_data(axs[0], x, y, m, n)
plot_error_hist(axs[1], x, y, m, n)
fig.savefig("linear_least_squares.pdf")
plt.close()

View File

@ -23,39 +23,18 @@
\item Fig 8.2 right: this should be a chi-squared distribution with one degree of freedom!
\end{itemize}
\subsection{Start with one-dimensional problem!}
\begin{itemize}
\item Let's fit a cubic function $y=cx^3$ (weight versus length of a tiger)\\
\includegraphics[width=0.8\textwidth]{cubicfunc}
\item Introduce the problem, $c$ is density and form factor
\item How to generate an artificial data set (refer to simulation chapter)
\item How to plot a function (do not use the data x values!)
\item Just the mean square error as a function of the factor c\\
\includegraphics[width=0.8\textwidth]{cubicerrors}
\item Also mention the cost function for a straight line
\item 1-d gradient, NO quiver plot (it is a nightmare to get this right)\\
\includegraphics[width=0.8\textwidth]{cubicmse}
\item 1-d gradient descend
\item Describe in words the n-d problem.
\item Homework is to do the 2d problem with the straight line!
\end{itemize}
\subsection{Linear fits}
\begin{itemize}
\item Polyfit is easy: unique solution! $c x^2$ is also a linear fit.
\item Example for overfitting with polyfit of a high order (=number of data points)
\end{itemize}
\section{Fitting in practice}
Fit with matlab functions lsqcurvefit, polyfit
\subsection{Non-linear fits}
\begin{itemize}
\item Example that illustrates the Nebenminima Problem (with error surface)
\item You need got initial values for the parameter!
\item Example that fitting gets harder the more parameter yuo have.
\item You need initial values for the parameter!
\item Example that fitting gets harder the more parameter you have.
\item Try to fix as many parameter before doing the fit.
\item How to test the quality of a fit? Residuals. $\chi^2$ test. Run-test.
\end{itemize}

View File

@ -2,195 +2,197 @@
\exercisechapter{Optimization and gradient descent}
Optimization problems arise in many different contexts. For example,
to understand the behavior of a given system, the system is probed
with a range of input signals and then the resulting responses are
measured. This input-output relation can be described by a model. Such
a model can be a simple function that maps the input signals to
corresponding responses, it can be a filter, or a system of
differential equations. In any case, the model has some parameters that
specify how input and output signals are related. Which combination
of parameter values are best suited to describe the input-output
relation? The process of finding the best parameter values is an
optimization problem. For a simple parameterized function that maps
input to output values, this is the special case of a \enterm{curve
fitting} problem, where the average distance between the curve and
the response values is minimized. One basic numerical method used for
such optimization problems is the so called gradient descent, which is
introduced in this chapter.
%%% Weiteres einfaches verbales Beispiel? Eventuell aus der Populationsoekologie?
to understand the behavior of a given neuronal system, the system is
probed with a range of input signals and then the resulting responses
are measured. This input-output relation can be described by a
model. Such a model can be a simple function that maps the input
signals to corresponding responses, it can be a filter, or a system of
differential equations. In any case, the model has some parameters
that specify how input and output signals are related. Which
combination of parameter values are best suited to describe the
input-output relation? The process of finding the best parameter
values is an optimization problem. For a simple parameterized function
that maps input to output values, this is the special case of a
\enterm{curve fitting} problem, where the average distance between the
curve and the response values is minimized. One basic numerical method
used for such optimization problems is the so called gradient descent,
which is introduced in this chapter.
\begin{figure}[t]
\includegraphics[width=1\textwidth]{lin_regress}\hfill
\titlecaption{Example data suggesting a linear relation.}{A set of
input signals $x$, e.g. stimulus intensities, were used to probe a
system. The system's output $y$ to the inputs are noted
(left). Assuming a linear relation between $x$ and $y$ leaves us
with 2 parameters, the slope (center) and the intercept with the
y-axis (right panel).}\label{linregressiondatafig}
\includegraphics{cubicfunc}
\titlecaption{Example data suggesting a cubic relation.}{The length
$x$ and weight $y$ of $n=34$ male tigers (blue, left). Assuming a
cubic relation between size and weight leaves us with a single
free parameters, a scaling factor. The cubic relation is shown for
a few values of this scaling factor (orange and red,
right).}\label{cubicdatafig}
\end{figure}
The data plotted in \figref{linregressiondatafig} suggest a linear
relation between input and output of the system. We thus assume that a
straight line
For demonstrating the curve-fitting problem let's take the simple
example of weights and sizes measured for a number of male tigers
(\figref{cubicdatafig}). Weight $y$ is proportional to volume
$V$ via the density $\rho$. The volume $V$ of any object is
proportional to its length $x$ cubed. The factor $\alpha$ relating
volume and size cubed depends on the shape of the object and we do not
know this factor for tigers. For the data set we thus expect a cubic
relation between weight and length
\begin{equation}
\label{straightline}
y = f(x; m, b) = m\cdot x + b
\label{cubicfunc}
y = f(x; c) = c\cdot x^3
\end{equation}
is an appropriate model to describe the system. The line has two free
parameter, the slope $m$ and the $y$-intercept $b$. We need to find
values for the slope and the intercept that best describe the measured
data. In this chapter we use this example to illustrate the gradient
descent and how this methods can be used to find a combination of
slope and intercept that best describes the system.
where $c=\rho\alpha$, the product of a tiger's density and form
factor, is the only free parameter in the relation. We would like to
find out which value of $c$ best describes the measured data. In the
following we use this example to illustrate the gradient descent as a
basic method for finding such an optimal parameter.
\section{The error function --- mean squared error}
Before the optimization can be done we need to specify what exactly is
considered an optimal fit. In our example we search the parameter
combination that describe the relation of $x$ and $y$ best. What is
meant by this? Each input $x_i$ leads to an measured output $y_i$ and
for each $x_i$ there is a \emph{prediction} or \emph{estimation}
$y^{est}(x_i)$ of the output value by the model. At each $x_i$
estimation and measurement have a distance or error $y_i -
y^{est}(x_i)$. In our example the estimation is given by the equation
$y^{est}(x_i) = f(x_i;m,b)$. The best fitting model with parameters
$m$ and $b$ is the one that minimizes the distances between
observation $y_i$ and estimation $y^{est}(x_i)$
(\figref{leastsquareerrorfig}).
As a first guess we could simply minimize the sum $\sum_{i=1}^N y_i -
y^{est}(x_i)$. This approach, however, will not work since a minimal sum
can also be achieved if half of the measurements is above and the
other half below the predicted line. Positive and negative errors
would cancel out and then sum up to values close to zero. A better
approach is to sum over the absolute values of the distances:
$\sum_{i=1}^N |y_i - y^{est}(x_i)|$. This sum can only be small if all
deviations are indeed small no matter if they are above or below the
predicted line. Instead of the sum we could also take the average
\begin{equation}
\label{meanabserror}
f_{dist}(\{(x_i, y_i)\}|\{y^{est}(x_i)\}) = \frac{1}{N} \sum_{i=1}^N |y_i - y^{est}(x_i)|
\end{equation}
Instead of the averaged absolute errors, the \enterm[mean squared
error]{mean squared error} (\determ[quadratischer
Fehler!mittlerer]{mittlerer quadratischer Fehler})
Before we go ahead finding the optimal parameter value we need to
specify what exactly we consider as an optimal fit. In our example we
search the parameter that describes the relation of $x$ and $y$
best. What is meant by this? The length $x_i$ of each tiger is
associated with a weight $y_i$ and for each $x_i$ we have a
\emph{prediction} or \emph{estimation} $y^{est}(x_i)$ of the weight by
the model \eqnref{cubicfunc} for a specific value of the parameter
$c$. Prediction and actual data value ideally match (in a perfect
noise-free world), but in general the estimate and measurement are
separated by some distance or error $y_i - y^{est}(x_i)$. In our
example the estimate of the weight for the length $x_i$ is given by
equation \eqref{cubicfunc} $y^{est}(x_i) = f(x_i;c)$. The best fitting
model with parameter $c$ is the one that somehow minimizes the
distances between observations $y_i$ and corresponding estimations
$y^{est}(x_i)$ (\figref{cubicerrorsfig}).
As a first guess we could simply minimize the sum of the distances,
$\sum_{i=1}^N y_i - y^{est}(x_i)$. This, however, does not work
because positive and negative errors would cancel out, no matter how
large they are, and sum up to values close to zero. Better is to sum
over absolute distances: $\sum_{i=1}^N |y_i - y^{est}(x_i)|$. This sum
can only be small if all deviations are indeed small no matter if they
are above or below the prediction. The sum of the squared distances,
$\sum_{i=1}^N (y_i - y^{est}(x_i))^2$, turns out to be an even better
choice. Instead of the sum we could also minimize the average distance
\begin{equation}
\label{meansquarederror}
f_{mse}(\{(x_i, y_i)\}|\{y^{est}(x_i)\}) = \frac{1}{N} \sum_{i=1}^N (y_i - y^{est}(x_i))^2
\end{equation}
is commonly used (\figref{leastsquareerrorfig}). Similar to the
absolute distance, the square of the errors, $(y_i - y^{est}(x_i))^2$, is
always positive and thus positive and negative error values do not
This is known as the \enterm[mean squared error]{mean squared error}
(\determ[quadratischer Fehler!mittlerer]{mittlerer quadratischer
Fehler}). Similar to the absolute distance, the square of the errors
is always positive and thus positive and negative error values do not
cancel each other out. In addition, the square punishes large
deviations over small deviations. In
chapter~\ref{maximumlikelihoodchapter} we show that minimizing the
mean square error is equivalent to maximizing the likelihood that the
mean squared error is equivalent to maximizing the likelihood that the
observations originate from the model, if the data are normally
distributed around the model prediction.
\begin{exercise}{meanSquaredErrorLine.m}{}\label{mseexercise}%
Given a vector of observations \varcode{y} and a vector with the
corresponding predictions \varcode{y\_est}, compute the \emph{mean
square error} between \varcode{y} and \varcode{y\_est} in a single
line of code.
\begin{exercise}{meansquarederrorline.m}{}\label{mseexercise}
Simulate $n=40$ tigers ranging from 2.2 to 3.9\,m in size and store
these sizes in a vector \varcode{x}. Compute the corresponding
predicted weights \varcode{yest} for each tiger according to
\eqnref{cubicfunc} with $c=6$\,\kilo\gram\per\meter\cubed. From the
predictions generate simulated measurements of the tiger's weights
\varcode{y}, by adding normally distributed random numbers to the
predictions scaled to a standard deviation of 50\,\kilo\gram.
Compute the \emph{mean squared error} between \varcode{y} and
\varcode{yest} in a single line of code.
\end{exercise}
\section{Objective function}
\section{Cost function}
The mean squared error is a so called \enterm{objective function} or
\enterm{cost function} (\determ{Kostenfunktion}). A cost function
assigns to a model prediction $\{y^{est}(x_i)\}$ for a given data set
$\{(x_i, y_i)\}$ a single scalar value that we want to minimize. Here
we aim to adapt the model parameters to minimize the mean squared
error \eqref{meansquarederror}. In general, the \enterm{cost function}
can be any function that describes the quality of the fit by mapping
the data and the predictions to a single scalar value.
we aim to adapt the model parameter to minimize the mean squared error
\eqref{meansquarederror}. In general, the \enterm{cost function} can
be any function that describes the quality of a fit by mapping the
data and the predictions to a single scalar value.
\begin{figure}[t]
\includegraphics[width=1\textwidth]{linear_least_squares}
\titlecaption{Estimating the \emph{mean square error}.} {The
deviation error, orange) between the prediction (red
line) and the observations (blue dots) is calculated for each data
point (left). Then the deviations are squared and the aveage is
\includegraphics{cubicerrors}
\titlecaption{Estimating the \emph{mean squared error}.} {The
deviation error (orange) between the prediction (red line) and the
observations (blue dots) is calculated for each data point
(left). Then the deviations are squared and the average is
calculated (right).}
\label{leastsquareerrorfig}
\label{cubicerrorsfig}
\end{figure}
Replacing $y^{est}$ in the mean squared error \eqref{meansquarederror}
with our model, the straight line \eqref{straightline}, the cost
function reads
with our cubic model \eqref{cubicfunc}, the cost function reads
\begin{eqnarray}
f_{cost}(m,b|\{(x_i, y_i)\}) & = & \frac{1}{N} \sum_{i=1}^N (y_i - f(x_i;m,b))^2 \label{msefunc} \\
& = & \frac{1}{N} \sum_{i=1}^N (y_i - m x_i - b)^2 \label{mseline}
f_{cost}(c|\{(x_i, y_i)\}) & = & \frac{1}{N} \sum_{i=1}^N (y_i - f(x_i;c))^2 \label{msefunc} \\
& = & \frac{1}{N} \sum_{i=1}^N (y_i - c x_i^3)^2 \label{msecube}
\end{eqnarray}
The optimization process tries to find the slope $m$ and the intercept
$b$ such that the cost function is minimized. With the mean squared
error as the cost function this optimization process is also called
method of the \enterm{least square error} (\determ[quadratischer
The optimization process tries to find a value for the factor $c$ such
that the cost function is minimized. With the mean squared error as
the cost function this optimization process is also called method of
\enterm{least squares} (\determ[quadratischer
Fehler!kleinster]{Methode der kleinsten Quadrate}).
\begin{exercise}{meanSquaredError.m}{}
Implement the objective function \eqref{mseline} as a function
\varcode{meanSquaredError()}. The function takes three
\begin{exercise}{meanSquaredErrorCubic.m}{}
Implement the objective function \eqref{msecube} as a function
\varcode{meanSquaredErrorCubic()}. The function takes three
arguments. The first is a vector of $x$-values and the second
contains the measurements $y$ for each value of $x$. The third
argument is a 2-element vector that contains the values of
parameters \varcode{m} and \varcode{b}. The function returns the
mean square error.
argument is the value of the factor $c$. The function returns the
mean squared error.
\end{exercise}
\section{Error surface}
For each combination of the two parameters $m$ and $b$ of the model we
can use \eqnref{mseline} to calculate the corresponding value of the
cost function. The cost function $f_{cost}(m,b|\{(x_i, y_i)\}|)$ is a
function $f_{cost}(m,b)$, that maps the parameter values $m$ and $b$
to a scalar error value. The error values describe a landscape over the
$m$-$b$ plane, the error surface, that can be illustrated graphically
using a 3-d surface-plot. $m$ and $b$ are plotted on the $x$- and $y$-
axis while the third dimension indicates the error value
(\figref{errorsurfacefig}).
\section{Graph of the cost function}
For each value of the parameter $c$ of the model we can use
\eqnref{msecube} to calculate the corresponding value of the cost
function. The cost function $f_{cost}(c|\{(x_i, y_i)\}|)$ is a
function $f_{cost}(c)$ that maps the parameter value $c$ to a scalar
error value. For a given data set we thus can simply plot the cost
function as a function of the parameter $c$ (\figref{cubiccostfig}).
\begin{exercise}{plotcubiccosts.m}{}
Calculate the mean squared error between the data and the cubic
function for a range of values of the factor $c$ using the
\varcode{meanSquaredErrorCubic()} function from the previous
exercise. Plot the graph of the cost function.
\end{exercise}
\begin{figure}[t]
\includegraphics[width=0.75\textwidth]{error_surface}
\titlecaption{Error surface.}{The two model parameters $m$ and $b$
define the base area of the surface plot. For each parameter
combination of slope and intercept the error is calculated. The
resulting surface has a minimum which indicates the parameter
combination that best fits the data.}\label{errorsurfacefig}
\includegraphics{cubiccost}
\titlecaption{Minimum of the cost function.}{For a given data set
the cost function, the mean squared error \eqnref{msecube}, as a
function of the unknown parameter $c$ has a minimum close to the
true value of $c$ that was used to generate the data
(left). Simply taking the absolute minimum of the cost function
computed for a pre-set range of values for the parameter $c$, has
the disadvantage to be limited in precision (right) and the
possibility to entirely miss the global minimum if it is outside
the computed range.}\label{cubiccostfig}
\end{figure}
\begin{exercise}{errorSurface.m}{}\label{errorsurfaceexercise}
Generate 20 data pairs $(x_i|y_i)$ that are linearly related with
slope $m=0.75$ and intercept $b=-40$, using \varcode{rand()} for
drawing $x$ values between 0 and 120 and \varcode{randn()} for
jittering the $y$ values with a standard deviation of 15. Then
calculate the mean squared error between the data and straight lines
for a range of slopes and intercepts using the
\varcode{meanSquaredError()} function from the previous exercise.
Illustrates the error surface using the \code{surface()} function.
Consult the documentation to find out how to use \code{surface()}.
\end{exercise}
By looking at the error surface we can directly see the position of
the minimum and thus estimate the optimal parameter combination. How
can we use the error surface to guide an automatic optimization
process?
The obvious approach would be to calculate the error surface for any
combination of slope and intercept values and then find the position
of the minimum using the \code{min} function. This approach, however
has several disadvantages: (i) it is computationally very expensive to
calculate the error for each parameter combination. The number of
combinations increases exponentially with the number of free
parameters (also known as the ``curse of dimensionality''). (ii) the
accuracy with which the best parameters can be estimated is limited by
the resolution used to sample the parameter space. The coarser the
parameters are sampled the less precise is the obtained position of
the minimum.
By looking at the plot of the cost function we can visually identify
the position of the minimum and thus estimate the optimal value for
the parameter $c$. How can we use the cost function to guide an
automatic optimization process?
The obvious approach would be to calculate the mean squared error for
a range of parameter values and then find the position of the minimum
using the \code{min()} function. This approach, however has several
disadvantages: (i) The accuracy of the estimation of the best
parameter is limited by the resolution used to sample the parameter
space. The coarser the parameters are sampled the less precise is the
obtained position of the minimum (\figref{cubiccostfig}, right). (ii)
The range of parameter values might not include the absolute minimum.
(iii) In particular for functions with more than a single free
parameter it is computationally expensive to calculate the cost
function for each parameter combination at a sufficient
resolution. The number of combinations increases exponentially with
the number of free parameters. This is known as the \enterm{curse of
dimensionality}.
So we need a different approach. We want a procedure that finds the
minimum of the cost function with a minimal number of computations and
@ -206,34 +208,242 @@ to arbitrary precision.
m = \frac{f(x + \Delta x) - f(x)}{\Delta x}
\end{equation}
of a function $y = f(x)$ is the slope of the secant (red) defined
by the points $(x,f(x))$ and $(x+\Delta x,f(x+\Delta x))$ with the
by the points $(x,f(x))$ and $(x+\Delta x,f(x+\Delta x))$ at
distance $\Delta x$.
The slope of the function $y=f(x)$ at the position $x$ (yellow) is
The slope of the function $y=f(x)$ at the position $x$ (orange) is
given by the derivative $f'(x)$ of the function at that position.
It is defined by the difference quotient in the limit of
infinitesimally (orange) small distances $\Delta x$:
infinitesimally (red and yellow) small distances $\Delta x$:
\begin{equation}
\label{derivative}
f'(x) = \frac{{\rm d} f(x)}{{\rm d}x} = \lim\limits_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \end{equation}
\end{minipage}\vspace{2ex}
It is not possible to calculate the derivative, \eqnref{derivative},
numerically. The derivative can only be estimated using the
difference quotient, \eqnref{difffrac}, by using sufficiently small
$\Delta x$.
It is not possible to calculate the exact value of the derivative
\eqref{derivative} numerically. The derivative can only be estimated
by computing the difference quotient \eqref{difffrac} using
sufficiently small $\Delta x$.
\end{ibox}
\begin{ibox}[tp]{\label{partialderivativebox}Partial derivative and gradient}
Some functions that depend on more than a single variable:
\section{Gradient}
Imagine to place a ball at some point on the cost function
\figref{cubiccostfig}. Naturally, it would roll down the slope and
eventually stop at the minimum of the error surface (if it had no
inertia). We will use this analogy to develop an algorithm to find our
way to the minimum of the cost function. The ball always follows the
steepest slope. Thus we need to figure out the direction of the slope
at the position of the ball.
\begin{figure}[t]
\includegraphics{cubicgradient}
\titlecaption{Derivative of the cost function.}{The gradient, the
derivative \eqref{costderivative} of the cost function, is
negative to the left of the minimum (vertical line) of the cost
function, zero (horizontal line) at, and positive to the right of
the minimum (left). For each value of the parameter $c$ the
negative gradient (arrows) points towards the minimum of the cost
function (right).} \label{gradientcubicfig}
\end{figure}
In our one-dimensional example of a single free parameter the slope is
simply the derivative of the cost function with respect to the
parameter $c$ (\figref{gradientcubicfig}, left). This derivative is called
the \entermde{Gradient}{gradient} of the cost function:
\begin{equation}
\label{costderivative}
\nabla f_{cost}(c) = \frac{{\rm d} f_{cost}(c)}{{\rm d} c}
\end{equation}
There is no need to calculate this derivative analytically, because it
can be approximated numerically by the difference quotient
(Box~\ref{differentialquotientbox}) for small steps $\Delta c$:
\begin{equation}
\frac{{\rm d} f_{cost}(c)}{{\rm d} c} =
\lim\limits_{\Delta c \to 0} \frac{f_{cost}(c + \Delta c) - f_{cost}(c)}{\Delta c}
\approx \frac{f_{cost}(c + \Delta c) - f_{cost}(c)}{\Delta c}
\end{equation}
Choose, for example, $\Delta c = 10^{-7}$. The derivative is positive
for positive slopes. Since want to go down the hill, we choose the
opposite direction (\figref{gradientcubicfig}, right).
\begin{exercise}{meanSquaredGradientCubic.m}{}\label{gradientcubic}
Implement a function \varcode{meanSquaredGradientCubic()}, that
takes the $x$- and $y$-data and the parameter $c$ as input
arguments. The function should return the derivative of the mean
squared error $f_{cost}(c)$ with respect to $c$ at the position
$c$.
\end{exercise}
\begin{exercise}{plotcubicgradient.m}{}
Using the \varcode{meanSquaredGradientCubic()} function from the
previous exercise, plot the derivative of the cost function as a
function of $c$.
\end{exercise}
\section{Gradient descent}
\begin{figure}[t]
\includegraphics{cubicmse}
\titlecaption{Gradient descent.}{The algorithm starts at an
arbitrary position. At each point the gradient is estimated and
the position is updated as long as the length of the gradient is
sufficiently large. The dots show the positions after each
iteration of the algorithm.} \label{gradientdescentcubicfig}
\end{figure}
Finally, we are able to implement the optimization itself. By now it
should be obvious why it is called the gradient descent method. From a
starting position on we iteratively walk down the slope of the cost
function against its gradient. All ingredients necessary for this
algorithm are already there. We need: (i) the cost function
(\varcode{meanSquaredErrorCubic()}), and (ii) the gradient
(\varcode{meanSquaredGradientCubic()}). The algorithm of the gradient
descent works as follows:
\begin{enumerate}
\item Start with some arbitrary value $p_0$ for the parameter $c$.
\item \label{computegradient} Compute the gradient
\eqnref{costderivative} at the current position $p_i$.
\item If the length of the gradient, the absolute value of the
derivative \eqnref{costderivative}, is smaller than some threshold
value, we assume to have reached the minimum and stop the search.
We return the current parameter value $p_i$ as our best estimate of
the parameter $c$ that minimizes the cost function.
We are actually looking for the point at which the derivative of the
cost function equals zero, but this is impossible because of
numerical imprecision. We thus apply a threshold below which we are
sufficiently close to zero.
\item \label{gradientstep} If the length of the gradient exceeds the
threshold we take a small step into the opposite direction:
\begin{equation}
\label{gradientdescent}
p_{i+1} = p_i - \epsilon \cdot \nabla f_{cost}(p_i)
\end{equation}
where $\epsilon$ is a factor linking the gradient to
appropriate steps in the parameter space.
\item Repeat steps \ref{computegradient} -- \ref{gradientstep}.
\end{enumerate}
\Figref{gradientdescentcubicfig} illustrates the gradient descent ---
the path the imaginary ball has chosen to reach the minimum. We walk
along the parameter axis against the gradient as long as the gradient
differs sufficiently from zero. At steep slopes we take large steps
(the distance between the red dots in \figref{gradientdescentcubicfig}
is large).
\begin{exercise}{gradientDescentCubic.m}{}\label{gradientdescentexercise}
Implement the gradient descent algorithm for the problem of fitting
a cubic function \eqref{cubicfunc} to some measured data pairs $x$
and $y$ as a function \varcode{gradientDescentCubic()} that returns
the estimated best fitting parameter value $c$ as well as two
vectors with all the parameter values and the corresponding values
of the cost function that the algorithm iterated trough. As
additional arguments that function takes the initial value for the
parameter $c$, the factor $\epsilon$ connecting the gradient with
iteration steps in \eqnref{gradientdescent}, and the threshold value
for the absolute value of the gradient terminating the algorithm.
\end{exercise}
\begin{exercise}{plotgradientdescentcubic.m}{}\label{plotgradientdescentexercise}
Use the function \varcode{gradientDescentCubic()} to fit the
simulated data from exercise~\ref{mseexercise}. Plot the returned
values of the parameter $c$ as as well as the corresponding mean
squared errors as a function of iteration step (two plots). Compare
the result of the gradient descent method with the true value of $c$
used to simulate the data. Inspect the plots and adapt $\epsilon$
and the threshold to make the algorithm behave as intended. Finally
plot the data together with the best fitting cubic relation
\eqref{cubicfunc}.
\end{exercise}
The $\epsilon$ parameter in \eqnref{gradientdescent} is critical. If
too large, the algorithm does not converge to the minimum of the cost
function (try it!). At medium values it oscillates around the minimum
but might nevertheless converge. Only for sufficiently small values
(here $\epsilon = 0.00001$) does the algorithm follow the slope
downwards towards the minimum.
The terminating condition on the absolute value of the gradient
influences how often the cost function is evaluated. The smaller the
threshold value the more often the cost is computed and the more
precisely the fit parameter is estimated. If it is too small, however,
the increase in precision is negligible, in particular in comparison
to the increased computational effort. Have a look at the derivatives
that we plotted in exercise~\ref{gradientcubic} and decide on a
sensible value for the threshold. Run the gradient descent algorithm
and check how the resulting $c$ parameter values converge and how many
iterations were needed. Then reduce the threshold (by factors of ten)
and check how this changes the results.
Many modern algorithms for finding the minimum of a function are based
on the basic idea of the gradient descent. Luckily these algorithms
choose $\epsilon$ in a smart adaptive way and they also come up with
sensible default values for the termination condition. On the other
hand, these algorithm often take optional arguments that let you
control how they behave. Now you know what this is all about.
\section{N-dimensional minimization problems}
So far we were concerned about finding the right value for a single
parameter that minimizes a cost function. Often we deal with
functions that have more than a single parameter, in general $n$
parameters. We then need to find the minimum in an $n$ dimensional
parameter space.
For our tiger problem, we could have also fitted the exponent $a$ of
the power-law relation between size and weight, instead of assuming a
cubic relation with $a=3$:
\begin{equation}
\label{powerfunc}
y = f(x; c, a) = f(x; \vec p) = c\cdot x^a
\end{equation}
We then could check whether the resulting estimate of the exponent
$a$ indeed is close to the expected power of three. The
power-law \eqref{powerfunc} has two free parameters $c$ and $a$.
Instead of a single parameter we are now dealing with a vector $\vec
p$ containing $n$ parameter values. Here, $\vec p = (c, a)$. All
the concepts we introduced on the example of the one dimensional
problem of tiger weights generalize to $n$-dimensional problems. We
only need to adapt a few things. The cost function for the mean
squared error reads
\begin{equation}
\label{ndimcostfunc}
f_{cost}(\vec p|\{(x_i, y_i)\}) = \frac{1}{N} \sum_{i=1}^N (y_i - f(x_i;\vec p))^2
\end{equation}
\begin{figure}[t]
\includegraphics{powergradientdescent}
\titlecaption{Gradient descent on an error surface.}{Contour plot of
the cost function \eqref{ndimcostfunc} for the fit of a power law
\eqref{powerfunc} to some data. Here the cost function is a long
and narrow valley on the plane spanned by the two parameters $c$
and $a$ of the power law. The red line marks the path of the
gradient descent algorithm. The gradient is always perpendicular
to the contour lines. The algorithm quickly descends into the
valley and then slowly creeps on the shallow bottom of the valley
towards the global minimum where it terminates (yellow circle).
} \label{powergradientdescentfig}
\end{figure}
For two-dimensional problems the graph of the cost function is an
\enterm{error surface} (\determ{{Fehlerfl\"ache}}). The two parameters
span a two-dimensional plane. The cost function assigns to each
parameter combination on this plane a single value. This results in a
landscape over the parameter plane with mountains and valleys and we
are searching for the position of the bottom of the deepest valley
(\figref{powergradientdescentfig}).
\begin{ibox}[tp]{\label{partialderivativebox}Partial derivatives and gradient}
Some functions depend on more than a single variable. For example, the function
\[ z = f(x,y) \]
for example depends on $x$ and $y$. Using the partial derivative
depends on both $x$ and $y$. Using the partial derivatives
\[ \frac{\partial f(x,y)}{\partial x} = \lim\limits_{\Delta x \to 0} \frac{f(x + \Delta x,y) - f(x,y)}{\Delta x} \]
and
\[ \frac{\partial f(x,y)}{\partial y} = \lim\limits_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x,y)}{\Delta y} \]
one can estimate the slope in the direction of the variables
individually by using the respective difference quotient
(Box~\ref{differentialquotientbox}). \vspace{1ex}
one can calculate the slopes in the directions of each of the
variables by means of the respective difference quotient
(see box~\ref{differentialquotientbox}). \vspace{1ex}
\begin{minipage}[t]{0.5\textwidth}
\mbox{}\\[-2ex]
@ -242,145 +452,129 @@ to arbitrary precision.
\hfill
\begin{minipage}[t]{0.46\textwidth}
For example, the partial derivatives of
\[ f(x,y) = x^2+y^2 \] are
\[ f(x,y) = x^2+y^2 \vspace{-1ex} \] are
\[ \frac{\partial f(x,y)}{\partial x} = 2x \; , \quad \frac{\partial f(x,y)}{\partial y} = 2y \; .\]
The gradient is a vector that is constructed from the partial derivatives:
The gradient is a vector with the partial derivatives as coordinates:
\[ \nabla f(x,y) = \left( \begin{array}{c} \frac{\partial f(x,y)}{\partial x} \\[1ex] \frac{\partial f(x,y)}{\partial y} \end{array} \right) \]
This vector points into the direction of the strongest ascend of
$f(x,y)$.
\end{minipage}
\vspace{0.5ex} The figure shows the contour lines of a bi-variate
\vspace{0.5ex} The figure shows the contour lines of a bivariate
Gaussian $f(x,y) = \exp(-(x^2+y^2)/2)$ and the gradient (thick
arrows) and the corresponding two partial derivatives (thin arrows)
for three different locations.
arrows) together with the corresponding partial derivatives (thin
arrows) for three different locations.
\end{ibox}
\section{Gradient}
Imagine to place a small ball at some point on the error surface
\figref{errorsurfacefig}. Naturally, it would roll down the steepest
slope and eventually stop at the minimum of the error surface (if it had no
inertia). We will use this picture to develop an algorithm to find our
way to the minimum of the objective function. The ball will always
follow the steepest slope. Thus we need to figure out the direction of
the steepest slope at the position of the ball.
The \entermde{Gradient}{gradient} (Box~\ref{partialderivativebox}) of the
objective function is the vector
When we place a ball somewhere on the slopes of a hill, it rolls
downwards and eventually stops at the bottom. The ball always rolls in
the direction of the steepest slope. For a two-dimensional parameter
space of our example, the \entermde{Gradient}{gradient}
(box~\ref{partialderivativebox}) of the cost function is a vector
\begin{equation}
\label{gradientpowerlaw}
\nabla f_{cost}(c, a) = \left( \frac{\partial f_{cost}(c, a)}{\partial c},
\frac{\partial f_{cost}(c, a)}{\partial a} \right)
\end{equation}
that points into the direction of the strongest ascend of the cost
function. The gradient is given by the partial derivatives
(box~\ref{partialderivativebox}) of the mean squared error with
respect to the parameters $c$ and $a$ of the power law
relation. In general, for $n$-dimensional problems, the gradient is an
$n-$ dimensional vector containing for each of the $n$ parameters
$p_j$ the respective partial derivatives as coordinates:
\begin{equation}
\label{gradient}
\nabla f_{cost}(m,b) = \left( \frac{\partial f(m,b)}{\partial m},
\frac{\partial f(m,b)}{\partial b} \right)
\nabla f_{cost}(\vec p) = \left( \frac{\partial f_{cost}(\vec p)}{\partial p_j} \right)
\end{equation}
The iterative equation \eqref{gradientdescent} of the gradient descent
stays exactly the same, with the only difference that the current
parameter value $p_i$ becomes a vector $\vec p_i$ of parameter values:
\begin{equation}
\label{ndimgradientdescent}
\vec p_{i+1} = \vec p_i - \epsilon \cdot \nabla f_{cost}(\vec p_i)
\end{equation}
that points to the strongest ascend of the objective function. The
gradient is given by partial derivatives
(Box~\ref{partialderivativebox}) of the mean squared error with
respect to the parameters $m$ and $b$ of the straight line. There is
no need to calculate it analytically because it can be estimated from
the partial derivatives using the difference quotient
(Box~\ref{differentialquotientbox}) for small steps $\Delta m$ and
$\Delta b$. For example, the partial derivative with respect to $m$
can be computed as
The algorithm proceeds along the negative gradient
(\figref{powergradientdescentfig}).
For the termination condition we need the length of the gradient. In
one dimension it was just the absolute value of the derivative. For
$n$ dimensions this is according to the \enterm{Pythagorean theorem}
(\determ[Pythagoras!Satz des]{Satz des Pythagoras}) the square root of
the sum of the squared partial derivatives:
\begin{equation}
\frac{\partial f_{cost}(m,b)}{\partial m} = \lim\limits_{\Delta m \to
0} \frac{f_{cost}(m + \Delta m, b) - f_{cost}(m,b)}{\Delta m}
\approx \frac{f_{cost}(m + \Delta m, b) - f_{cost}(m,b)}{\Delta m} \; .
\label{ndimabsgradient}
|\nabla f_{cost}(\vec p_i)| = \sqrt{\sum_{i=1}^n \left(\frac{\partial f_{cost}(\vec p)}{\partial p_i}\right)^2}
\end{equation}
The length of the gradient indicates the steepness of the slope
(\figref{gradientquiverfig}). Since want to go down the hill, we
choose the opposite direction.
The \code{norm()} function implements this given a vector with the
partial derivatives.
\subsection{Passing a function as an argument to another function}
\begin{figure}[t]
\includegraphics[width=0.75\textwidth]{error_gradient}
\titlecaption{Gradient of the error surface.} {Each arrow points
into the direction of the greatest ascend at different positions
of the error surface shown in \figref{errorsurfacefig}. The
contour lines in the background illustrate the error surface. Warm
colors indicate high errors, colder colors low error values. Each
contour line connects points of equal
error.}\label{gradientquiverfig}
\end{figure}
So far, all our code for the gradient descent algorithm was tailored
to a specific function, the cubic relation \eqref{cubicfunc}. It would
be much better if we could pass an arbitrary function to our gradient
algorithm. Then we would not need to rewrite it every time anew.
\begin{exercise}{meanSquaredGradient.m}{}\label{gradientexercise}%
Implement a function \varcode{meanSquaredGradient()}, that takes the
$x$- and $y$-data and the set of parameters $(m, b)$ of a straight
line as a two-element vector as input arguments. The function should
return the gradient at the position $(m, b)$ as a vector with two
elements.
\end{exercise}
This is possible. We can indeed pass a function as an argument to
another function. For this use the \code{@}-operator. As an example
let's define a function that produces a standard plot for a function:
\begin{exercise}{errorGradient.m}{}
Extend the script of exercises~\ref{errorsurfaceexercise} to plot
both the error surface and gradients using the
\varcode{meanSquaredGradient()} function from
exercise~\ref{gradientexercise}. Vectors in space can be easily
plotted using the function \code{quiver()}. Use \code{contour()}
instead of \code{surface()} to plot the error surface.
\end{exercise}
\pageinputlisting[caption={Example function taking a function as argument.}]{funcPlotter.m}
This function can then be used as follows for plotting a sine wave. We
pass the built in \varcode{sin()} function as \varcode{@sin} as an
argument to our function:
\section{Gradient descent}
Finally, we are able to implement the optimization itself. By now it
should be obvious why it is called the gradient descent method. All
ingredients are already there. We need: (i) the cost function
(\varcode{meanSquaredError()}), and (ii) the gradient
(\varcode{meanSquaredGradient()}). The algorithm of the gradient
descent works as follows:
\begin{enumerate}
\item Start with some given combination of the parameters $m$ and $b$
($p_0 = (m_0, b_0)$).
\item \label{computegradient} Calculate the gradient at the current
position $p_i$.
\item If the length of the gradient falls below a certain value, we
assume to have reached the minimum and stop the search. We are
actually looking for the point at which the length of the gradient
is zero, but finding zero is impossible because of numerical
imprecision. We thus apply a threshold below which we are
sufficiently close to zero (e.g. \varcode{norm(gradient) < 0.1}).
\item \label{gradientstep} If the length of the gradient exceeds the
threshold we take a small step into the opposite direction:
\begin{equation}
p_{i+1} = p_i - \epsilon \cdot \nabla f_{cost}(m_i, b_i)
\end{equation}
where $\epsilon = 0.01$ is a factor linking the gradient to
appropriate steps in the parameter space.
\item Repeat steps \ref{computegradient} -- \ref{gradientstep}.
\end{enumerate}
\pageinputlisting[caption={Passing a function handle as an argument to a function.}]{funcplotterexamples.m}
\Figref{gradientdescentfig} illustrates the gradient descent --- the
path the imaginary ball has chosen to reach the minimum. Starting at
an arbitrary position on the error surface we change the position as
long as the gradient at that position is larger than a certain
threshold. If the slope is very steep, the change in the position (the
distance between the red dots in \figref{gradientdescentfig}) is
large.
\begin{figure}[t]
\includegraphics[width=0.45\textwidth]{gradient_descent}
\titlecaption{Gradient descent.}{The algorithm starts at an
arbitrary position. At each point the gradient is estimated and
the position is updated as long as the length of the gradient is
sufficiently large.The dots show the positions after each
iteration of the algorithm.} \label{gradientdescentfig}
\end{figure}
\subsection{Gradient descent algorithm for arbitrary functions}
Now we are ready to adapt the gradient descent algorithm from
exercise~\ref{gradientdescentexercise} to arbitrary functions with $n$
parameters that we want to fit to some data.
\begin{exercise}{gradientDescent.m}{}
Implement the gradient descent for the problem of fitting a straight
line to some measured data. Reuse the data generated in
exercise~\ref{errorsurfaceexercise}.
\begin{enumerate}
\item Store for each iteration the error value.
\item Plot the error values as a function of the iterations, the
number of optimization steps.
\item Plot the measured data together with the best fitting straight line.
\end{enumerate}\vspace{-4.5ex}
Adapt the function \varcode{gradientDescentCubic()} from
exercise~\ref{gradientdescentexercise} to implement the gradient
descent algorithm for any function \varcode{func(x, p)} that takes
as first argument the $x$-data values and as second argument a
vector with parameter values. The new function takes a vector $\vec
p_0$ for the initial parameter values and also returns the best
parameter combination as a vector. Use a \varcode{for} loop over the
two dimensions for computing the gradient.
\end{exercise}
For testing our new function we need to implement the power law
\eqref{powerfunc}:
\section{Summary}
\begin{exercise}{powerLaw.m}{}
Write a function that implements \eqref{powerfunc}. The function
gets as arguments a vector $x$ containing the $x$-data values and
another vector containing as elements the parameters for the power
law, i.e. the factor $c$ and the power $a$. It returns a vector
with the computed $y$ values for each $x$ value.
\end{exercise}
Now let's use the new gradient descent function to fit a power law to
our tiger data-set (\figref{powergradientdescentfig}):
\begin{exercise}{plotgradientdescentpower.m}{}
Use the function \varcode{gradientDescent()} to fit the
\varcode{powerLaw()} function to the simulated data from
exercise~\ref{mseexercise}. Plot the returned values of the two
parameters against each other. Compare the result of the gradient
descent method with the true values of $c$ and $a$ used to simulate
the data. Observe the norm of the gradient and inspect the plots to
adapt $\epsilon$ and the threshold if necessary. Finally plot the
data together with the best fitting power-law \eqref{powerfunc}.
\end{exercise}
\section{Fitting non-linear functions to data}
The gradient descent is an important numerical method for solving
optimization problems. It is used to find the global minimum of an
@ -389,33 +583,44 @@ objective function.
Curve fitting is a common application for the gradient descent method.
For the case of fitting straight lines to data pairs, the error
surface (using the mean squared error) has exactly one clearly defined
global minimum. In fact, the position of the minimum can be analytically
calculated as shown in the next chapter.
Problems that involve nonlinear computations on parameters, e.g. the
rate $\lambda$ in an exponential function $f(x;\lambda) = e^{\lambda
x}$, do not have an analytical solution for the least squares. To
find the least squares for such functions numerical methods such as
the gradient descent have to be applied.
The suggested gradient descent algorithm can be improved in multiple
ways to converge faster. For example one could adapt the step size to
the length of the gradient. These numerical tricks have already been
implemented in pre-defined functions. Generic optimization functions
such as \matlabfun{fminsearch()} have been implemented for arbitrary
objective functions, while the more specialized function
\matlabfun{lsqcurvefit()} i specifically designed for optimizations in
the least square error sense.
%\newpage
global minimum. In fact, the position of the minimum can be
analytically calculated as shown in the next chapter. For linear
fitting problems numerical methods like the gradient descent are not
needed.
Fitting problems that involve nonlinear functions of the parameters,
e.g. the power law \eqref{powerfunc} or the exponential function
$f(x;\lambda) = e^{\lambda x}$, do not have an analytical solution for
the least squares. To find the least squares for such functions
numerical methods such as the gradient descent have to be applied.
The suggested gradient descent algorithm is quite fragile and requires
manually tuned values for $\epsilon$ and the threshold for terminating
the iteration. The algorithm can be improved in multiple ways to
converge more robustly and faster. For example one could adapt the
step size to the length of the gradient. These numerical tricks have
already been implemented in pre-defined functions. Generic
optimization functions such as \mcode{fminsearch()} have been
implemented for arbitrary objective functions, while the more
specialized function \mcode{lsqcurvefit()} is specifically designed
for optimizations in the least square error sense.
\begin{exercise}{plotlsqcurvefitpower.m}{}
Use the \matlab-function \varcode{lsqcurvefit()} instead of
\varcode{gradientDescent()} to fit the \varcode{powerLaw()} function
to the simulated data from exercise~\ref{mseexercise}. Plot the data
and the resulting best fitting power law function.
\end{exercise}
\begin{important}[Beware of secondary minima!]
Finding the absolute minimum is not always as easy as in the case of
fitting a straight line. Often, the error surface has secondary or
fitting a straight line. Often, the cost function has secondary or
local minima in which the gradient descent stops even though there
is a more optimal solution, a global minimum that is lower than the
local minimum. Starting from good initial positions is a good
approach to avoid getting stuck in local minima. Also keep in mind
that error surfaces tend to be simpler (less local minima) the fewer
that cost functions tend to be simpler (less local minima) the fewer
parameters are fitted from the data. Each additional parameter
increases complexity and is computationally more expensive.
\end{important}

View File

Before

Width:  |  Height:  |  Size: 424 KiB

After

Width:  |  Height:  |  Size: 424 KiB

Some files were not shown because too many files have changed in this diff Show More