Merge branch 'master' of whale.am28.uni-tuebingen.de:scientificComputing

This commit is contained in:
Jan Grewe 2018-01-17 12:10:59 +01:00
commit accd23ad44
21 changed files with 367 additions and 47 deletions

View File

@ -0,0 +1,37 @@
%% (a) bootstrap:
nperm = 1000;
rb = zeros(nperm,1);
for i=1:nperm
% indices for resampling the data:
inx = randi(length(x), length(x), 1);
% resampled data pairs:
xb=x(inx);
yb=y(inx);
rb(i) = corr(xb, yb);
end
%% (b) pdf of the correlation coefficients:
[hb,bb] = hist(rb, 20 );
hb = hb/sum(hb)/(bb(2)-bb(1)); % normalization
%% (c) significance:
rbq = quantile(rb, 0.05);
fprintf('correlation coefficient at 5%% significance = %.2f\n', rbq );
if rbq > 0.0
fprintf('--> correlation r=%.2f is significant\n', rd);
else
fprintf('--> r=%.2f is not a significant correlation\n', rd);
end
%% plot:
hold on;
bar(b, h, 'facecolor', [0.5 0.5 0.5]);
bar(bb, hb, 'facecolor', 'b');
bar(bb(bb<=rbq), hb(bb<=rbq), 'facecolor', 'r');
plot( [rd rd], [0 4], 'r', 'linewidth', 2 );
xlim([-0.25 0.75])
xlabel('Correlation coefficient');
ylabel('Probability density');
hold off;
savefigpdf( gcf, 'correlationbootstrap.pdf', 12, 6 );

Binary file not shown.

View File

@ -148,32 +148,56 @@ distributed?
\continue
\question \qt{Permutation test}
\question \qt{Permutation test} \label{permutationtest}
We want to compute the significance of a correlation by means of a permutation test.
\begin{parts}
\part Generate 1000 correlated pairs $x$, $y$ of random numbers according to:
\part \label{permutationtestdata} Generate 1000 correlated pairs
$x$, $y$ of random numbers according to:
\begin{verbatim}
n = 1000
a = 0.2;
x = randn(n, 1);
y = randn(n, 1) + a*x;
\end{verbatim}
\part Generate a scatter plot of the two variables.
\part Why is $y$ correlated with $x$?
\part Compute the correlation coefficient between $x$ and $y$.
\part What do you need to do in order to destroy the correlations between the $x$-$y$ pairs?
\part Do exactly this 1000 times and compute each time the correlation coefficient.
\part Compute the probability density of these correlation coefficients.
\part Is the correlation of the original data set significant?
\part What does significance of the correlation mean?
\part Vary the sample size \code{n} and compute in the same way the
significance of the correlation.
\part Generate a scatter plot of the two variables.
\part Why is $y$ correlated with $x$?
\part Compute the correlation coefficient between $x$ and $y$.
\part What do you need to do in order to destroy the correlations between the $x$-$y$ pairs?
\part Do exactly this 1000 times and compute each time the correlation coefficient.
\part Compute and plot the probability density of these correlation
coefficients.
\part Is the correlation of the original data set significant?
\part What does significance of the correlation mean?
\part Vary the sample size \code{n} and compute in the same way the
significance of the correlation.
\end{parts}
\begin{solution}
\lstinputlisting{correlationsignificance.m}
\includegraphics[width=1\textwidth]{correlationsignificance}
\end{solution}
\question \qt{Bootstrap of the correlation coefficient}
The permutation test generates the distribution of the null hypothesis
of uncorrelated data and we check whether the correlation coefficient
of the data differs significantly from this
distribution. Alternatively we can bootstrap the data while keeping
the pairs and determine the confidence interval of the correlation
coefficient of the data. If this differs significantly from a
correlation coefficient of zero we can conclude that the correlation
coefficient of the data quantifies indeed a correlated data.
We take the same data set that we have generated in exercise
\ref{permutationtest} (\ref{permutationtestdata}).
\begin{parts}
\part Bootstrap 1000 times the correlation coefficient from the data.
\part Compute and plot the probability density of these correlation
coefficients.
\part Is the correlation of the original data set significant?
\end{parts}
\begin{solution}
\lstinputlisting{correlationbootstrap.m}
\includegraphics[width=1\textwidth]{correlationbootstrap}
\end{solution}
\end{questions}

View File

@ -279,6 +279,9 @@
% content of someoutput.out
%
% Within the exercise environment enumerate is redefined to generate (a), (b), (c), ...
%
% The boolean showexercisesolutions controls whether solutions for the exercises
% are actually included.
\usepackage{mdframed}
\usepackage{xstring}
\newlistof{exercisef}{loe}{\tr{Exercises}{\"Ubungen}}

View File

@ -28,7 +28,7 @@ den Parametern $\theta$.
Wenn nun den $n$ unabh\"angigen Beobachtungen $x_1, x_2, \ldots x_n$
die gleiche Wahrscheinlichkeitsverteilung $p(x|\theta)$ zugrundeliegt
(\enterm{i.i.d.} idependent and identically distributed), dann ist die
(\enterm{i.i.d.} independent and identically distributed), dann ist die
Verbundwahrscheinlichkeit $p(x_1,x_2, \ldots x_n|\theta)$ des
Auftretens der Werte $x_1, x_2, \ldots x_n$, gegeben ein bestimmtes
$\theta$,
@ -71,14 +71,14 @@ Gr\"unden wird meistens das Maximum der logarithmierten Likelihood
Wenn die Me{\ss}daten $x_1, x_2, \ldots x_n$ der Normalverteilung
\eqnref{normpdfmean} entstammen, und wir den Mittelwert $\mu=\theta$ als
einzigen Parameter der Verteilung betrachten, welcher Wert von
$\theta$ maximiert dessen Likelhood?
$\theta$ maximiert dessen Likelihood?
\begin{figure}[t]
\includegraphics[width=1\textwidth]{mlemean}
\titlecaption{\label{mlemeanfig} Maximum Likelihood Sch\"atzung des
Mittelwerts.}{Oben: Die Daten zusammen mit drei m\"oglichen
Normalverteilungen mit unterschiedlichen Mittelwerten (Pfeile) aus
denen die Daten stammen k\"onnten. Unteln links: Die Likelihood
denen die Daten stammen k\"onnten. Unten links: Die Likelihood
in Abh\"angigkeit des Mittelwerts als Parameter der
Normalverteilungen. Unten rechts: die entsprechende
Log-Likelihood. An der Position des Maximums bei $\theta=2$
@ -91,15 +91,15 @@ Die Log-Likelihood \eqnref{loglikelihood} ist
& = & \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi \sigma^2}}e^{-\frac{(x_i-\theta)^2}{2\sigma^2}} \\
& = & \sum_{i=1}^n - \log \sqrt{2\pi \sigma^2} -\frac{(x_i-\theta)^2}{2\sigma^2} \; .
\end{eqnarray*}
Der Logarithmus hat die sch\"one Eigenschaft die Exponentialfunktion
Der Logarithmus hat die sch\"one Eigenschaft, die Exponentialfunktion
der Normalverteilung auszul\"oschen, da der Logarithmus die
Umkehrfunktion der Exponentialfunktion ist ($\log(e^x)=x$).
Zur Bestimmung des Maximums der Log-Likelihood berechnen wir deren Ableitung
nach dem Parameter $\theta$ und setzen diese gleich Null:
\begin{eqnarray*}
\frac{\text{d}}{\text{d}\theta} \log {\cal L}(\theta|x_1,x_2, \ldots x_n) & = & \sum_{i=1}^n \frac{2(x_i-\theta)}{2\sigma^2} \;\; = \;\; 0 \\
\Leftrightarrow \quad \sum_{i=1}^n x_i - \sum_{i=1}^n x_i \theta & = & 0 \\
\frac{\text{d}}{\text{d}\theta} \log {\cal L}(\theta|x_1,x_2, \ldots x_n) & = & \sum_{i=1}^n - \frac{2(x_i-\theta)}{2\sigma^2} \;\; = \;\; 0 \\
\Leftrightarrow \quad \sum_{i=1}^n x_i - \sum_{i=1}^n \theta & = & 0 \\
\Leftrightarrow \quad n \theta & = & \sum_{i=1}^n x_i \\
\Leftrightarrow \quad \theta & = & \frac{1}{n} \sum_{i=1}^n x_i \;\; = \;\; \bar x
\end{eqnarray*}
@ -188,12 +188,12 @@ und setzen diese gleich Null:
\Leftrightarrow \quad \theta & = & \frac{\sum_{i=1}^n \frac{x_iy_i}{\sigma_i^2}}{ \sum_{i=1}^n \frac{x_i^2}{\sigma_i^2}} \label{mleslope}
\end{eqnarray}
Damit haben wir nun einen anlytischen Ausdruck f\"ur die Bestimmung
der Steigung $\theta$ des Regressionsgeraden gewonnen
der Steigung $\theta$ der Regressionsgeraden gewonnen
(\figref{mleproplinefig}).
Ein Gradientenabstieg ist f\"ur das Fitten der Geradensteigung also
gar nicht n\"otig. Das gilt allgemein f\"ur das Fitten von
Koeffizienten von linear kombinierten Basisfunktionen. Wie z.B. die
Koeffizienten von linear kombinierten Basisfunktionen. Wie z.B.
die Steigung $m$ und der y-Achsenabschnitt $b$ einer Geradengleichung
\[ y = m \cdot x +b \]
oder allgemeiner die Koeffizienten $a_k$ eines Polynoms
@ -279,8 +279,8 @@ als Funktion des Orientierungswinkels).
bevorzugte Orientierung des Stimulus (farbige Linien). Ein
Stimulus einer bestimmten Orientierung aktiviert die Neurone in
spezifischer Weise (Punkte). Unten: Die Log-Likelihood dieser
Aktivit\"aten wir maximal in der N\"ahe der wahren Orientierung
des Stimulus.}
Aktivit\"aten wird in der N\"ahe der wahren Orientierung
des Stimulus maximiert.}
\end{figure}
Das Gehirn ist aber mit dem umgekehrten Problem konfrontiert: gegeben

View File

@ -7,7 +7,7 @@
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\header{{\bfseries\large Scientific Computing}}{{\bfseries\large Project: \ptitle}}{{\bfseries\large Januar 24th, 2017}}
\header{{\bfseries\large Scientific Computing}}{{\bfseries\large Project: \ptitle}}{{\bfseries\large Januar 18th, 2018}}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}

View File

@ -10,10 +10,10 @@
{\bf Dates:}
The {\bf code} and the {\bf presentation} should be uploaded to
ILIAS at latest on Thursday, February 9th, 12:59h. We will
ILIAS at latest on Sunday, February 4th, 23:59h. We will
store all presentations on one computer to allow fast
transitions between talks. The presentations start on Thursday,
February 9th at 1:00h c.t..
transitions between talks. The presentations start on Monday,
February 5th at 9:15h.
\vspace{1ex}
{\bf Files:}

View File

@ -0,0 +1,25 @@
% data:
load('lin_regression.mat')
% compute mean squared error for a range of slopes and intercepts:
slopes = -5:0.25:5;
intercepts = -30:1:30;
errors = zeros(length(slopes), length(intercepts));
for i = 1:length(slopes)
for j = 1:length(intercepts)
errors(i,j) = lsqError([slopes(i), intercepts(j)], x, y);
end
end
% minimum of error surface:
[me, mi] = min(errors(:));
[ia, ib] = ind2sub(size(errors), mi);
eparams = [errors(ia), errors(ib)];
% gradient descent:
pstart = [-2. 10.];
[params, errors] = descent(x, y, pstart);
% comparison:
fprintf('descent: %6.3f %6.3f\n', params(1), params(2));
fprintf('errors: %6.3f %6.3f\n', eparams(1), eparams(2));

15
regression/code/descent.m Normal file
View File

@ -0,0 +1,15 @@
function [params, errors] = descent(xdata, ydata, pstart)
mingradient = 0.1;
eps = 0.01;
errors = [];
params = pstart;
count = 1;
gradient = [100.0, 100.0];
while norm(gradient) > mingradient
gradient = lsqGradient(params, xdata, ydata);
errors(count) = lsqError(params, xdata, ydata);
params = params - eps .* gradient;
count = count + 1;
end
end

View File

@ -0,0 +1,22 @@
clear
close all
load('lin_regression.mat')
pstart = [-2. 10.];
[params, errors] = descent(x, y, pstart);
figure()
subplot(2,1,1)
hold on
scatter(x, y, 'displayname', 'data')
xx = min(x):0.01:max(x);
fx = params(1)*xx + params(2);
plot(xx, fx, 'displayname', 'fit')
xlabel('Input')
ylabel('Output')
grid on
legend show
subplot(2,1,2)
plot(errors)
xlabel('optimization steps')
ylabel('error')

View File

@ -1,6 +1,6 @@
load('lin_regression.mat');
% compute mean squared error for a range of sloopes and intercepts:
% compute mean squared error for a range of slopes and intercepts:
slopes = -5:0.25:5;
intercepts = -30:1:30;
error_surf = zeros(length(slopes), length(intercepts));

18
regression/code/linefit.m Normal file
View File

@ -0,0 +1,18 @@
% data:
load('lin_regression.mat')
% gradient descent:
pstart = [-2. 10.];
[params, errors] = descent(x, y, pstart);
% lsqcurvefit:
line = @(p, x) x.* p(1) + p(2);
cparams = lsqcurvefit(line, pstart, x, y);
% polyfit:
pparams = polyfit(x, y, 1);
% comparison:
fprintf('descent: %6.3f %6.3f\n', params(1), params(2));
fprintf('lsqcurvefit: %6.3f %6.3f\n', cparams(1), cparams(2));
fprintf('polyfit: %6.3f %6.3f\n', pparams(1), pparams(2));

View File

@ -0,0 +1,34 @@
TEXFILES=$(wildcard exercises??.tex)
EXERCISES=$(TEXFILES:.tex=.pdf)
SOLUTIONS=$(EXERCISES:exercises%=solutions%)
.PHONY: pdf exercises solutions watch watchexercises watchsolutions clean
pdf : $(SOLUTIONS) $(EXERCISES)
exercises : $(EXERCISES)
solutions : $(SOLUTIONS)
$(SOLUTIONS) : solutions%.pdf : exercises%.tex instructions.tex
{ echo "\\documentclass[answers,12pt,a4paper,pdftex]{exam}"; sed -e '1d' $<; } > $(patsubst %.pdf,%.tex,$@)
pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $(patsubst %.pdf,%.tex,$@) || true
rm $(patsubst %.pdf,%,$@).[!p]*
$(EXERCISES) : %.pdf : %.tex instructions.tex
pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $< || true
watch :
while true; do ! make -q pdf && make pdf; sleep 0.5; done
watchexercises :
while true; do ! make -q exercises && make exercises; sleep 0.5; done
watchsolutions :
while true; do ! make -q solutions && make solutions; sleep 0.5; done
clean :
rm -f *~ *.aux *.log *.out
cleanup : clean
rm -f $(SOLUTIONS) $(EXERCISES)

View File

@ -13,10 +13,16 @@
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot} \header{{\bfseries\large \"Ubung
}}{{\bfseries\large Gradientenabstiegsverfahren}}{{\bfseries\large 10. Januar, 2017}}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: Solutions}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large Exercise 11\stitle}}{{\bfseries\large Gradient descent}}{{\bfseries\large January 9th, 2018}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de} \runningfooter{}{\thepage}{}
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
@ -24,21 +30,15 @@
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\renewcommand{\solutiontitle}{\noindent\textbf{L\"osung:}\par\noindent}
\renewcommand{\solutiontitle}{\noindent\textbf{Solution:}\par\noindent}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-6.5ex}
\begin{center}
\textbf{\Large Einf\"uhrung in die wissenschaftliche
Datenverarbeitung}\\[1ex] {\large Jan Grewe, Jan Benda}\\[-3ex]
Abteilung Neuroethologie \hfill --- \hfill Institut f\"ur
Neurobiologie \hfill --- \hfill
\includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
\input{instructions}
\begin{questions}
\question Implementiere den Gradientenabstieg f\"ur das Problem der
Parameteranpassung der linearen Geradengleichung an die Messdaten in
der Datei \emph{lin\_regression.mat}.

View File

@ -0,0 +1,129 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: Solutions}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large Exercise 11\stitle}}{{\bfseries\large Gradient descent}}{{\bfseries\large January 9th, 2018}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\renewcommand{\solutiontitle}{\noindent\textbf{Solution:}\par\noindent}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{instructions}
\begin{questions}
\question Implement the gradient descent for finding the parameters
of a straigth line that we want to fit to the data in the file
\emph{lin\_regression.mat}.
In the lecture we already prepared most of the necessary functions:
1. the error function (\code{meanSquareError()}), 2. the cost
function (\code{lsqError()}), and 3. the gradient
(\code{lsqGradient()}). Read chapter 8 ``Optimization and gradient
descent'' in the script, in particular section 8.4 and exercise 8.4!
The algorithm for the descent towards the minimum of the cost
function is as follows:
\begin{enumerate}
\item Start with some arbitrary parameter values $\vec p_0 = (m_0, b_0)$
for the slope and the intercept of the straight line.
\item \label{computegradient} Compute the gradient of the cost function
at the current values of the parameters $\vec p_i$.
\item If the magnitude (length) of the gradient is smaller than some
small number, the algorithm converged close to the minimum of the
cost function and we abort the descent. Right at the minimum the
magnitude of the gradient is zero. However, since we determine
the gradient numerically, it will never be exactly zero. This is
why we just require the gradient to be sufficiently small
(e.g. \code{norm(gradient) < 0.1}).
\item \label{gradientstep} Move against the gradient by a small step
($\epsilon = 0.01$):
\[\vec p_{i+1} = \vec p_i - \epsilon \cdot \nabla f_{cost}(m_i, b_i)\]
\item Repeat steps \ref{computegradient} -- \ref{gradientstep}.
\end{enumerate}
\begin{parts}
\part Implement the gradient descent in a function that returns
the parameter values at the minimum of the cost function and a vector
with the value of the cost function at each step of the algorithm.
\begin{solution}
\lstinputlisting{../code/descent.m}
\end{solution}
\part Plot the data and the straight line with the parameter
values that you found with the gradient descent method.
\part Plot the development of the costs as a function of the
iteration step.
\begin{solution}
\lstinputlisting{../code/descentfit.m}
\end{solution}
\part Find the position of the minimum of the cost function by
means of the \code{min()} function. Compare with the result of the
gradient descent method. Vary the value of $\epsilon$ and the
minimum gradient. What are good values such that the gradient
descent gets closest to the true minimum of the cost function?
\begin{solution}
\lstinputlisting{../code/checkdescent.m}
\end{solution}
\part Use the functions \code{polyfit()} and \code{lsqcurvefit()}
provided by matlab to find the slope and intercept of a straight
line that fits the data.
\begin{solution}
\lstinputlisting{../code/linefit.m}
\end{solution}
\end{parts}
\end{questions}
\end{document}

View File

@ -0,0 +1,6 @@
\vspace*{-7.8ex}
\begin{center}
\textbf{\Large Introduction to Scientific Computing}\\[2.3ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Neuroethology Lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}

View File

@ -16,4 +16,8 @@
\input{regression}
Example for fit with matlab functions lsqcurvefit, polyfit
Example for overfitting with polyfit of a high order (=number of data points)
\end{document}

View File

@ -264,7 +264,7 @@ Kostenfunktion mit m\"oglichst wenigen Berechnungen findet.
und zeigt in Richtung des st\"arksten Anstiegs der Funktion $f(x,y)$.
\end{minipage}
\vspace{1ex} Die Abbildung zeigt die Kontourlinien einer bivariaten
\vspace{1ex} Die Abbildung zeigt die Konturlinien einer bivariaten
Gau{\ss}glocke $f(x,y) = \exp(-(x^2+y^2)/2)$ und den Gradienten mit
seinen partiellen Ableitungen an drei verschiedenen Stellen.
\end{ibox}
@ -283,7 +283,7 @@ Gef\"alles rollt, ben\"otigen wir Information \"uber die Richtung des
Gef\"alles an der jeweils aktuellen Position.
Der \determ{Gradient} (Box~\ref{partialderivativebox}) der Kostenfunktion
\[ \nabla f_{cost}(m,b) = \left( \frac{\partial e(m,b)}{\partial m},
\[ \nabla f_{cost}(m,b) = \left( \frac{\partial f(m,b)}{\partial m},
\frac{\partial f(m,b)}{\partial b} \right) \] bzgl. der beiden
Parameter $m$ und $b$ der Geradengleichung ist ein Vektor, der in
Richtung des steilsten Anstiegs der Kostenfunktion $f_{cost}(m,b)$ zeigt.
@ -306,10 +306,10 @@ partielle Ableitung nach $m$ durch
\titlecaption{Gradient der Fehlerfl\"ache.}
{Jeder Pfeil zeigt die Richtung und die
Steigung f\"ur verschiedene Parameterkombination aus Steigung und
$y$-Achsenabschnitt an. Die Kontourlinien im Hintergrund
$y$-Achsenabschnitt an. Die Konturlinien im Hintergrund
illustrieren die Fehlerfl\"ache. Warme Farben stehen f\"ur
gro{\ss}e Fehlerwerte, kalte Farben f\"ur kleine. Jede
Kontourlinie steht f\"ur eine Linie gleichen
Konturlinie steht f\"ur eine Linie gleichen
Fehlers.}\label{gradientquiverfig}
\end{figure}
@ -368,6 +368,7 @@ Punkte in Abbildung \ref{gradientdescentfig} gro{\ss}.
Optimierungsschritt an.} \label{gradientdescentfig}
\end{figure}
\setboolean{showexercisesolutions}{false}
\begin{exercise}{gradientDescent.m}{}
Implementiere den Gradientenabstieg f\"ur das Problem der
Parameteranpassung der linearen Geradengleichung an die Messdaten in
@ -409,6 +410,7 @@ Kostenfunktionen gemacht \matlabfun{fminsearch()}, w\"ahrend spezielle
Funktionen z.B. f\"ur die Minimierung des quadratischen Abstands bei
einem Kurvenfit angeboten werden \matlabfun{lsqcurvefit()}.
\newpage
\begin{important}[Achtung Nebenminima!]
Das Finden des globalen Minimums ist leider nur selten so leicht wie
bei einem Geradenfit. Oft hat die Kostenfunktion viele Nebenminima,

View File

@ -67,6 +67,7 @@
\lstset{inputpath=regression/code}
\include{regression/lecture/regression}
\setboolean{showexercisesolutions}{true}
\graphicspath{{likelihood/lecture/}{likelihood/lecture/figures/}}
\lstset{inputpath=likelihood/code}
\include{likelihood/lecture/likelihood}

View File

@ -348,14 +348,14 @@ probability density functions like the one of the normal distribution
\subsection{Kernel densities}
A problem of using histograms for estimating probability densities is
that the have hard bin edges. Depending on where the bin edges are placed
that they have hard bin edges. Depending on where the bin edges are placed
a data value falls in one or the other bin.
\begin{figure}[t]
\includegraphics[width=1\textwidth]{kerneldensity}
\titlecaption{\label{kerneldensityfig} Kernel densities.}{Left: The
histogram-based estimation of the probability density is dependent
also on the position of the bins. In the bottom plot the bins have
on the position of the bins. In the bottom plot the bins have
bin shifted by half a bin width (here $\Delta x=0.4$) and as a
result details of the probability density look different. Look,
for example at the height of the largest bin. Right: In contrast,
@ -366,7 +366,7 @@ a data value falls in one or the other bin.
To avoid this problem one can use so called \enterm {kernel densities}
for estimating probability densities from data. Here every data point
is replaced by a kernel (a function with integral one, like for
example the Gaussian function) that is moved exactly to the position
example the Gaussian) that is moved exactly to the position
indicated by the data value. Then all the kernels of all the data
values are summed up, the sum is divided by the number of data values,
and we get an estimate of the probability density.
@ -417,7 +417,7 @@ and percentiles can be determined from the inverse cumulative function.
100 data values drawn from a normal distribution (red) in
comparison to the true cumulative distribution function computed
by numerically integrating the normal distribution function
(blue). From the cumulative distribution function one can read of
(blue). From the cumulative distribution function one can read off
the probabilities of getting values smaller than a given value
(here: $P(x \ge -1) \approx 0.15$). From the inverse cumulative
distribution the position of percentiles can be computed (here: