Merge branch 'master' of https://whale.am28.uni-tuebingen.de/git/teaching/scientificComputing
This commit is contained in:
commit
9e661f1951
@ -9,8 +9,8 @@ pythonplots : $(PYPDFFILES)
|
||||
|
||||
$(PYPDFFILES) : %.pdf: %.py
|
||||
echo $$(which python)
|
||||
#python3 $<
|
||||
python $<
|
||||
python3 $<
|
||||
#python $<
|
||||
|
||||
cleanpythonplots :
|
||||
rm -f $(PYPDFFILES)
|
||||
|
@ -4,60 +4,61 @@
|
||||
\chapter{\tr{Maximum likelihood estimation}{Maximum-Likelihood-Sch\"atzer}}
|
||||
\label{maximumlikelihoodchapter}
|
||||
|
||||
\selectlanguage{ngerman}
|
||||
\selectlanguage{english}
|
||||
|
||||
In vielen Situationen wollen wir einen oder mehrere Parameter $\theta$
|
||||
einer Wahrscheinlichkeitsverteilung sch\"atzen, so dass die Verteilung
|
||||
die Daten $x_1, x_2, \ldots x_n$ am besten beschreibt.
|
||||
\determ{Maximum-Likelihood-Sch\"atzer} (\enterm{maximum likelihood
|
||||
estimator}, \determ[mle|see{Maximum-Likelihood-Sch\"atzer}]{mle})
|
||||
w\"ahlen die Parameter so, dass die Wahrscheinlichkeit, dass die Daten
|
||||
aus der Verteilung stammen, am gr\"o{\ss}ten ist.
|
||||
There are situations in which we want to estimate one or more
|
||||
parameters $\theta$ of a probability distribution that best describe
|
||||
the data $x_1, x_2, \ldots x_n$. \enterm{Maximum likelihood
|
||||
estimators} (\determ{Maximum-Likelihood-Sch\"atzer},
|
||||
\determ[mle|see{Maximum-Likelihood-Sch\"atzer}]{mle}) choose the
|
||||
parameters such that it maximizes the likelihood of $x_1, x_2, \ldots
|
||||
x_n$ originating from the distribution.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Maximum Likelihood}
|
||||
Sei $p(x|\theta)$ (lies ``Wahrscheinlichkeit(sdichte) von $x$ gegeben
|
||||
$\theta$'') die Wahrscheinlichkeits(dichte)verteilung von $x$ mit dem
|
||||
Parameter(n) $\theta$. Das k\"onnte die Normalverteilung
|
||||
|
||||
Let $p(x|\theta)$ (to be read as ``Probability(density) of $x$ given
|
||||
$\theta$.'') the probability (density) distribution of $x$ given the
|
||||
parameters $\theta$. This could be the normal distribution
|
||||
\begin{equation}
|
||||
\label{normpdfmean}
|
||||
p(x|\theta) = \frac{1}{\sqrt{2\pi \sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}
|
||||
\end{equation}
|
||||
sein mit dem Mittelwert $\mu$ und der Standardabweichung $\sigma$ als
|
||||
den Parametern $\theta$.
|
||||
|
||||
Wenn nun den $n$ unabh\"angigen Beobachtungen $x_1, x_2, \ldots x_n$
|
||||
die gleiche Wahrscheinlichkeitsverteilung $p(x|\theta)$ zugrundeliegt
|
||||
(\enterm{i.i.d.} independent and identically distributed), dann ist die
|
||||
Verbundwahrscheinlichkeit $p(x_1,x_2, \ldots x_n|\theta)$ des
|
||||
Auftretens der Werte $x_1, x_2, \ldots x_n$, gegeben ein bestimmtes
|
||||
$\theta$,
|
||||
defined by the mean ($\mu$) and the standard deviation $\sigma$ as
|
||||
parameters $\theta$. If the $n$ independent observations of $x_1,
|
||||
x_2, \ldots x_n$ originate from the same probability density
|
||||
distribution (\enterm{i.i.d.} independent and identically distributed)
|
||||
then is the conditional probability $p(x_1,x_2, \ldots x_n|\theta)$ of
|
||||
observing $x_1, x_2, \ldots x_n$ given the a specific $\theta$,
|
||||
\begin{equation}
|
||||
p(x_1,x_2, \ldots x_n|\theta) = p(x_1|\theta) \cdot p(x_2|\theta)
|
||||
\ldots p(x_n|\theta) = \prod_{i=1}^n p(x_i|\theta) \; .
|
||||
\end{equation}
|
||||
Andersherum gesehen ist das die \determ{Likelihood}
|
||||
(\enterm{likelihood}) den Parameter $\theta$ zu haben, gegeben die
|
||||
Me{\ss}werte $x_1, x_2, \ldots x_n$,
|
||||
Vice versa, is the \enterm{likelihood} of the parameters $\theta$
|
||||
given the observed data $x_1, x_2, \ldots x_n$,
|
||||
\begin{equation}
|
||||
{\cal L}(\theta|x_1,x_2, \ldots x_n) = p(x_1,x_2, \ldots x_n|\theta) \; .
|
||||
\end{equation}
|
||||
Beachte, dass die Likelihood ${\cal L}$ keine Wahrscheinlichkeit im engeren Sinne ist, da sie sich nicht zu Eins aufintegriert ($\int {\cal L}(\theta|x_1,x_2, \ldots x_n) \, d\theta \ne 1$).
|
||||
Note: the likelihood ${\cal L}$ is not a probability in the
|
||||
classic sense since it does not integrate to unity ($\int {\cal
|
||||
L}(\theta|x_1,x_2, \ldots x_n) \, d\theta \ne 1$).
|
||||
|
||||
Wir sind nun an dem Wert des Parameters $\theta_{mle}$ interessiert, der die
|
||||
Likelihood maximiert (Maximum-Likelihood Estimate ``mle''):
|
||||
When applying maximum likelihood estimations we are interested in the
|
||||
parameters $\theta$ that maximize the likelihood (``mle''):
|
||||
\begin{equation}
|
||||
\theta_{mle} = \text{argmax}_{\theta} {\cal L}(\theta|x_1,x_2, \ldots x_n)
|
||||
\end{equation}
|
||||
$\text{argmax}_xf(x)$ bezeichnet den Wert des Arguments $x$ der Funktion $f(x)$, bei
|
||||
dem $f(x)$ ihr globales Maximum annimmt. Wir suchen also den Wert von $\theta$
|
||||
bei dem die Likelihood ${\cal L}(\theta)$ ihr Maximum hat.
|
||||
|
||||
An der Stelle eines Maximums einer Funktion \"andert sich nichts, wenn
|
||||
die Funktionswerte mit einer streng monoton steigenden Funktion
|
||||
transformiert werden. Aus numerischen und gleich ersichtlichen mathematischen
|
||||
Gr\"unden wird meistens das Maximum der logarithmierten Likelihood
|
||||
(\determ{log-Likelihood}, \enterm{log-likelihood}) gesucht:
|
||||
$\text{argmax}_xf(x)$ denotes the values of the argument $x$ of the
|
||||
function $f(x)$ at which the function $f(x)$ reaches its global
|
||||
maximum. Thus, we search the value of $\theta$ at which the
|
||||
likelihood ${\cal L}(\theta)$ reaches its maximum.
|
||||
|
||||
The position of a function's maximum does not change when the values
|
||||
of the function are transformed by a strictly monotonously rising
|
||||
function such as the logarithm. For numerical and reasons that we will
|
||||
discuss below, we commonly search for the maximum of the logarithm of
|
||||
the likelihood (\enterm{log-likelihood}):
|
||||
|
||||
\begin{eqnarray}
|
||||
\theta_{mle} & = & \text{argmax}_{\theta}\; {\cal L}(\theta|x_1,x_2, \ldots x_n) \nonumber \\
|
||||
& = & \text{argmax}_{\theta}\; \log {\cal L}(\theta|x_1,x_2, \ldots x_n) \nonumber \\
|
||||
@ -66,7 +67,7 @@ Gr\"unden wird meistens das Maximum der logarithmierten Likelihood
|
||||
\end{eqnarray}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Beispiel: Das arithmetische Mittel}
|
||||
\subsection{Example: the arithmetic mean}
|
||||
|
||||
Wenn die Me{\ss}daten $x_1, x_2, \ldots x_n$ der Normalverteilung
|
||||
\eqnref{normpdfmean} entstammen, und wir den Mittelwert $\mu=\theta$ als
|
||||
|
Reference in New Issue
Block a user