Some makeup everywhere...
This commit is contained in:
parent
3216086642
commit
91dc9e1f3b
14
Makefile
14
Makefile
@ -1,13 +1,15 @@
|
|||||||
BASENAME=scientificcomputing-script
|
BASENAME=scientificcomputing-script
|
||||||
|
|
||||||
SUBDIRS=programming statistics bootstrap likelihood pointprocesses
|
SUBDIRS=designpattern statistics bootstrap regression likelihood pointprocesses
|
||||||
#spike_trains designpattern
|
#programming spike_trains
|
||||||
# regression
|
SUBTEXS=$(foreach subd, $(SUBDIRS), $(subd)/lecture/$(subd).tex)
|
||||||
|
|
||||||
pdf : $(BASENAME).pdf
|
pdf : chapters $(BASENAME).pdf
|
||||||
|
|
||||||
|
chapters :
|
||||||
for sd in $(SUBDIRS); do $(MAKE) -C $$sd/lecture pdf; done
|
for sd in $(SUBDIRS); do $(MAKE) -C $$sd/lecture pdf; done
|
||||||
|
|
||||||
$(BASENAME).pdf : $(BASENAME).tex header.tex
|
$(BASENAME).pdf : $(BASENAME).tex header.tex $(SUBTEXS)
|
||||||
export TEXMFOUTPUT=.; pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $< || true
|
export TEXMFOUTPUT=.; pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $< || true
|
||||||
|
|
||||||
clean :
|
clean :
|
||||||
@ -17,5 +19,5 @@ clean :
|
|||||||
cleanall : clean
|
cleanall : clean
|
||||||
rm -f $(PDFFILE)
|
rm -f $(PDFFILE)
|
||||||
|
|
||||||
watch :
|
watchpdf :
|
||||||
while true; do ! make -q pdf && make pdf; sleep 0.5; done
|
while true; do ! make -q pdf && make pdf; sleep 0.5; done
|
||||||
|
529
UT_WBMW_Rot_RGB.pdf
Normal file
529
UT_WBMW_Rot_RGB.pdf
Normal file
File diff suppressed because one or more lines are too long
@ -103,10 +103,10 @@ der gemessene Mittelwert um den Populationsmittelwert streut.
|
|||||||
Mittelwertes. Die --- normalerweise unbekannte ---
|
Mittelwertes. Die --- normalerweise unbekannte ---
|
||||||
Stichprobenverteilung des Mittelwerts (rot) ist um den
|
Stichprobenverteilung des Mittelwerts (rot) ist um den
|
||||||
Populationsmittelwert bei $\mu=0$ zentriert. Die
|
Populationsmittelwert bei $\mu=0$ zentriert. Die
|
||||||
Bootstrap-Verteilung (blau) die durch Resampling aus einer
|
Bootstrap-Verteilung (blau), die durch Resampling aus einer
|
||||||
Stichprobe gewonnen worden ist hat die gleiche Form und Breite wie
|
Stichprobe gewonnen worden ist, hat die gleiche Form und Breite
|
||||||
die Stichprobenverteilung, ist aber um den Mittelwert berechnet
|
wie die Stichprobenverteilung, ist aber um den Mittelwert der
|
||||||
aus der Stichprobe zentriert. Die Standardabweichung der
|
Stichprobe zentriert. Die Standardabweichung der
|
||||||
Bootstrapverteilung kann also als Sch\"atzer f\"ur den
|
Bootstrapverteilung kann also als Sch\"atzer f\"ur den
|
||||||
Standardfehler des Mittelwertes verwendet werden.}
|
Standardfehler des Mittelwertes verwendet werden.}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
@ -7,72 +7,6 @@ Beim Programmieren sind sich viel Codes in ihrer Grundstruktur sehr
|
|||||||
immer wieder in \"ahnlicher Weise vor. In diesem Kapitel stellen wir
|
immer wieder in \"ahnlicher Weise vor. In diesem Kapitel stellen wir
|
||||||
einige dieser ``Design pattern'' zusammen.
|
einige dieser ``Design pattern'' zusammen.
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\section{Plotten einer mathematischen Funktion}
|
|
||||||
Eine mathematische Funktion ordnet einem beliebigen $x$-Wert einen
|
|
||||||
$y$-Wert zu. Um eine solche Funktion zeichnen zu k\"onnen, m\"ussen
|
|
||||||
wir eine Wertetabelle aus vielen $x$-Werten und den
|
|
||||||
dazugeh\"origen Funktionswerten $y=f(x)$ erstellen.
|
|
||||||
|
|
||||||
Wir erstellen dazu einen Vektor mit geeigneten $x$-Werten, die von
|
|
||||||
dem kleinsten bis zu dem gr\"o{\ss}ten $x$-Wert laufen, den wir
|
|
||||||
plotten wollen. Die Schrittweite f\"ur die $x$-Werte w\"ahlen wir
|
|
||||||
klein genug, um eine sch\"one glatte Kurve zu bekommen. F\"ur jeden
|
|
||||||
Wert $x_i$ dieses Vektors berechnen wir den entsprechenden
|
|
||||||
Funktionswert und erzeugen damit einen Vektor mit den $y$-Werten. Die
|
|
||||||
Werte des $y$-Vektors k\"onnen dann gegen die Werte des $x$-Vektors
|
|
||||||
geplottet werden.
|
|
||||||
|
|
||||||
Folgende Programme berechnen und plotten die Funktion $f(x)=e^{-x^2}$:
|
|
||||||
\begin{lstlisting}
|
|
||||||
xmin = -1.0;
|
|
||||||
xmax = 2.0;
|
|
||||||
dx = 0.01; % Schrittweite
|
|
||||||
x = xmin:dx:xmax; % Vektor mit x-Werten
|
|
||||||
y = exp(-x.*x); % keine for Schleife! '.*' fuer elementweises multiplizieren
|
|
||||||
plot(x, y);
|
|
||||||
\end{lstlisting}
|
|
||||||
|
|
||||||
\begin{lstlisting}
|
|
||||||
x = -1:0.01:2; % Vektor mit x-Werten
|
|
||||||
y = exp(-x.*x); % keine for Schleife! '.*' fuer elementweises multiplizieren
|
|
||||||
plot(x, y);
|
|
||||||
\end{lstlisting}
|
|
||||||
|
|
||||||
\begin{lstlisting}
|
|
||||||
x = -1:0.01:2; % Vektor mit x-Werten
|
|
||||||
plot(x, exp(-x.*x));
|
|
||||||
\end{lstlisting}
|
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\section{Skalieren und Verschieben nicht nur von Zufallszahlen}
|
|
||||||
Zufallsgeneratoren geben oft nur Zufallszahlen mit festen Mittelwerten
|
|
||||||
und Standardabweichungen (auch Skalierungen) zur\"uck. Multiplikation
|
|
||||||
mit einem Faktor skaliert die Standardabweichung und Addition einer Zahl
|
|
||||||
verschiebt den Mittelwert.
|
|
||||||
|
|
||||||
\begin{lstlisting}
|
|
||||||
% 100 random numbers draw from a Gaussian distribution with mean 0 and standard deviation 1.
|
|
||||||
x = randn(100, 1);
|
|
||||||
|
|
||||||
% 100 random numbers drawn from a Gaussian distribution with mean 4.8 and standard deviation 2.3.
|
|
||||||
mu = 4.8;
|
|
||||||
sigma = 2.3;
|
|
||||||
y = randn(100, 1)*sigma + mu;
|
|
||||||
\end{lstlisting}
|
|
||||||
|
|
||||||
Das gleiche Prinzip ist manchmal auch sinnvoll f\"ur \code{zeros} oder \code{ones}:
|
|
||||||
\begin{lstlisting}
|
|
||||||
x = -1:0.01:2; % Vektor mit x-Werten
|
|
||||||
plot(x, exp(-x.*x));
|
|
||||||
% Plotte f\"ur die gleichen x-Werte eine Linie mit y=0.8:
|
|
||||||
plot(x, zeros(size(x))+0.8);
|
|
||||||
% ... Linie mit y=0.5:
|
|
||||||
plot(x, ones(size(x))*0.5);
|
|
||||||
\end{lstlisting}
|
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{for Schleifen \"uber Vektoren}
|
\section{for Schleifen \"uber Vektoren}
|
||||||
Manchmal m\"ochte man doch mit einer for-Schleife \"uber einen Vektor iterieren.
|
Manchmal m\"ochte man doch mit einer for-Schleife \"uber einen Vektor iterieren.
|
||||||
@ -136,6 +70,72 @@ mean(y)
|
|||||||
\end{lstlisting}
|
\end{lstlisting}
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Skalieren und Verschieben nicht nur von Zufallszahlen}
|
||||||
|
Zufallsgeneratoren geben oft nur Zufallszahlen mit festen Mittelwerten
|
||||||
|
und Standardabweichungen (auch Skalierungen) zur\"uck. Multiplikation
|
||||||
|
mit einem Faktor skaliert die Standardabweichung und Addition einer Zahl
|
||||||
|
verschiebt den Mittelwert.
|
||||||
|
|
||||||
|
\begin{lstlisting}
|
||||||
|
% 100 random numbers draw from a Gaussian distribution with mean 0 and standard deviation 1.
|
||||||
|
x = randn(100, 1);
|
||||||
|
|
||||||
|
% 100 random numbers drawn from a Gaussian distribution with mean 4.8 and standard deviation 2.3.
|
||||||
|
mu = 4.8;
|
||||||
|
sigma = 2.3;
|
||||||
|
y = randn(100, 1)*sigma + mu;
|
||||||
|
\end{lstlisting}
|
||||||
|
|
||||||
|
Das gleiche Prinzip ist manchmal auch sinnvoll f\"ur \code{zeros} oder \code{ones}:
|
||||||
|
\begin{lstlisting}
|
||||||
|
x = -1:0.01:2; % Vektor mit x-Werten
|
||||||
|
plot(x, exp(-x.*x));
|
||||||
|
% Plotte f\"ur die gleichen x-Werte eine Linie mit y=0.8:
|
||||||
|
plot(x, zeros(size(x))+0.8);
|
||||||
|
% ... Linie mit y=0.5:
|
||||||
|
plot(x, ones(size(x))*0.5);
|
||||||
|
\end{lstlisting}
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Plotten einer mathematischen Funktion}
|
||||||
|
Eine mathematische Funktion ordnet einem beliebigen $x$-Wert einen
|
||||||
|
$y$-Wert zu. Um eine solche Funktion zeichnen zu k\"onnen, m\"ussen
|
||||||
|
wir eine Wertetabelle aus vielen $x$-Werten und den
|
||||||
|
dazugeh\"origen Funktionswerten $y=f(x)$ erstellen.
|
||||||
|
|
||||||
|
Wir erstellen dazu einen Vektor mit geeigneten $x$-Werten, die von
|
||||||
|
dem kleinsten bis zu dem gr\"o{\ss}ten $x$-Wert laufen, den wir
|
||||||
|
plotten wollen. Die Schrittweite f\"ur die $x$-Werte w\"ahlen wir
|
||||||
|
klein genug, um eine sch\"one glatte Kurve zu bekommen. F\"ur jeden
|
||||||
|
Wert $x_i$ dieses Vektors berechnen wir den entsprechenden
|
||||||
|
Funktionswert und erzeugen damit einen Vektor mit den $y$-Werten. Die
|
||||||
|
Werte des $y$-Vektors k\"onnen dann gegen die Werte des $x$-Vektors
|
||||||
|
geplottet werden.
|
||||||
|
|
||||||
|
Folgende Programme berechnen und plotten die Funktion $f(x)=e^{-x^2}$:
|
||||||
|
\begin{lstlisting}
|
||||||
|
xmin = -1.0;
|
||||||
|
xmax = 2.0;
|
||||||
|
dx = 0.01; % Schrittweite
|
||||||
|
x = xmin:dx:xmax; % Vektor mit x-Werten
|
||||||
|
y = exp(-x.*x); % keine for Schleife! '.*' fuer elementweises multiplizieren
|
||||||
|
plot(x, y);
|
||||||
|
\end{lstlisting}
|
||||||
|
|
||||||
|
\begin{lstlisting}
|
||||||
|
x = -1:0.01:2; % Vektor mit x-Werten
|
||||||
|
y = exp(-x.*x); % keine for Schleife! '.*' fuer elementweises multiplizieren
|
||||||
|
plot(x, y);
|
||||||
|
\end{lstlisting}
|
||||||
|
|
||||||
|
\begin{lstlisting}
|
||||||
|
x = -1:0.01:2; % Vektor mit x-Werten
|
||||||
|
plot(x, exp(-x.*x));
|
||||||
|
\end{lstlisting}
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Normierung von Histogrammen}
|
\section{Normierung von Histogrammen}
|
||||||
Meistens sollten Histogramme normiert werden, damit sie vergleichbar
|
Meistens sollten Histogramme normiert werden, damit sie vergleichbar
|
||||||
|
16
header.tex
16
header.tex
@ -1,8 +1,8 @@
|
|||||||
|
|
||||||
%%%%% title %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%% title %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\title{\textbf{\huge\sffamily\tr{Introduction to\\[1ex] Scientific Computing}{Einf\"uhrung in die\\[1ex] wissenschaftliche Datenverarbeitung}}}
|
\title{\textbf{\huge\sffamily\tr{Introduction to\\[1ex] Scientific Computing}{Einf\"uhrung in die\\[1ex] wissenschaftliche Datenverarbeitung}}}
|
||||||
\author{{\LARGE Jan Grewe \& Jan Benda}\\[4ex]Abteilung Neuroethologie\\[2ex]\includegraphics[width=0.3\textwidth]{UT_WBMW_Rot_RGB}}
|
\author{{\LARGE Jan Grewe \& Jan Benda}\\[5ex]Abteilung Neuroethologie\\[2ex]\includegraphics[width=0.3\textwidth]{UT_WBMW_Rot_RGB}\vspace{3ex}}
|
||||||
\date{WS 15/16\\\vfill \includegraphics[width=1\textwidth]{announcements/correlationcartoon}}
|
\date{WS 15/16\\\vfill \centerline{\includegraphics[width=0.7\textwidth]{announcements/correlationcartoon}\rotatebox{90}{\footnotesize\url{www.xkcd.com}}}}
|
||||||
|
|
||||||
%%%% language %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%% language %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
% \newcommand{\tr}[2]{#1} % en
|
% \newcommand{\tr}[2]{#1} % en
|
||||||
@ -193,8 +193,9 @@
|
|||||||
\usepackage{framed}
|
\usepackage{framed}
|
||||||
\newcounter{maxexercise}
|
\newcounter{maxexercise}
|
||||||
\setcounter{maxexercise}{10000} % show listings up to exercise maxexercise
|
\setcounter{maxexercise}{10000} % show listings up to exercise maxexercise
|
||||||
\newcounter{theexercise}
|
\newcounter{exercise}[chapter]
|
||||||
\setcounter{theexercise}{1}
|
\setcounter{exercise}{0}
|
||||||
|
\newcommand{\theexercise}{\arabic{exercise}}
|
||||||
\newcommand{\codepath}{}
|
\newcommand{\codepath}{}
|
||||||
\newenvironment{exercise}[2]%
|
\newenvironment{exercise}[2]%
|
||||||
{\newcommand{\exercisesource}{#1}%
|
{\newcommand{\exercisesource}{#1}%
|
||||||
@ -203,11 +204,12 @@
|
|||||||
\newcommand{\saveenumi}{\theenumi}\renewcommand{\labelenumi}{(\alph{enumi})}%
|
\newcommand{\saveenumi}{\theenumi}\renewcommand{\labelenumi}{(\alph{enumi})}%
|
||||||
\renewcommand{\FrameCommand}{\colorbox{yellow!15}}%
|
\renewcommand{\FrameCommand}{\colorbox{yellow!15}}%
|
||||||
\MakeFramed{\advance\hsize-\width \FrameRestore}%
|
\MakeFramed{\advance\hsize-\width \FrameRestore}%
|
||||||
\noindent\textbf{\tr{Exercise}{\"Ubung} \arabic{theexercise}:}\newline}%
|
\stepcounter{exercise}%
|
||||||
|
\noindent\textbf{\tr{Exercise}{\"Ubung} \thechapter.\theexercise:}\newline}%
|
||||||
{\ifthenelse{\equal{\exercisesource}{}}{}%
|
{\ifthenelse{\equal{\exercisesource}{}}{}%
|
||||||
{\ifthenelse{\value{theexercise}>\value{maxexercise}}{}%
|
{\ifthenelse{\value{exercise}>\value{maxexercise}}{}%
|
||||||
{\lstinputlisting[belowskip=0pt]{\codepath\exercisesource}%
|
{\lstinputlisting[belowskip=0pt]{\codepath\exercisesource}%
|
||||||
\ifthenelse{\equal{\exerciseoutput}{}}{}%
|
\ifthenelse{\equal{\exerciseoutput}{}}{}%
|
||||||
{\addtocounter{lstlisting}{-1}\lstinputlisting[language={},title={\textbf{\tr{Output}{Ausgabe}:}},belowskip=0pt]{\codepath\exerciseoutput}}}}%
|
{\addtocounter{lstlisting}{-1}\lstinputlisting[language={},title={\textbf{\tr{Output}{Ausgabe}:}},belowskip=0pt]{\codepath\exerciseoutput}}}}%
|
||||||
\endMakeFramed\stepcounter{theexercise}%
|
\endMakeFramed%
|
||||||
\renewcommand{\theenumi}{\saveenumi}}
|
\renewcommand{\theenumi}{\saveenumi}}
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\chapter{\tr{Programming basics}{Grundlagen der Programmierung in \matlab}}
|
\chapter{\tr{Programming basics}{Programmierung in \matlab}}
|
||||||
|
|
||||||
\section{Variablen und Datentypen}
|
\section{Variablen und Datentypen}
|
||||||
|
|
||||||
@ -117,7 +117,7 @@ wie eine einzelne Variable gel\"oscht wird.
|
|||||||
\subsection{Datentypen}
|
\subsection{Datentypen}
|
||||||
|
|
||||||
Der Datentyp bestimmt, wie die im Speicher abgelegten Bitmuster
|
Der Datentyp bestimmt, wie die im Speicher abgelegten Bitmuster
|
||||||
interpretiert werden. Die Wichtigsten Datentpyen sind folgende:
|
interpretiert werden. Die wichtigsten Datentpyen sind folgende:
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item \textit{integer} - Ganze Zahlen. Hier gibt es mehrere
|
\item \textit{integer} - Ganze Zahlen. Hier gibt es mehrere
|
||||||
@ -134,7 +134,7 @@ unterschiedlichem Speicherbedarf und Wertebreich.
|
|||||||
|
|
||||||
\begin{table}[]
|
\begin{table}[]
|
||||||
\centering
|
\centering
|
||||||
\caption{Gel\"aufige Datentypen und ihr Wertebereich.}
|
\caption{Grundlegende Datentypen und ihr Wertebereich.}
|
||||||
\label{dtypestab}
|
\label{dtypestab}
|
||||||
\begin{tabular}{llcl}
|
\begin{tabular}{llcl}
|
||||||
\hline
|
\hline
|
||||||
@ -742,10 +742,11 @@ ans =
|
|||||||
|
|
||||||
|
|
||||||
\section{Graphische Darstellung von Daten}
|
\section{Graphische Darstellung von Daten}
|
||||||
|
%%% Wuerde ich als eigenes Kapitel machen! JB
|
||||||
|
%%% In einem separaten Verzeichnis...
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\includegraphics[width=0.9\columnwidth]{./images/convincing}
|
\includegraphics[width=0.9\columnwidth]{convincing}
|
||||||
\caption{Die Folgen schlecht annotierter
|
\caption{Die Folgen schlecht annotierter
|
||||||
Plots. \url{www.xkcd.com}} \label{xkcdplotting}
|
Plots. \url{www.xkcd.com}} \label{xkcdplotting}
|
||||||
\end{figure}
|
\end{figure}
|
@ -1,4 +1,4 @@
|
|||||||
\documentclass[12pt]{report}
|
\documentclass[12pt]{book}
|
||||||
|
|
||||||
\input{header}
|
\input{header}
|
||||||
|
|
||||||
@ -12,10 +12,25 @@
|
|||||||
|
|
||||||
\tableofcontents
|
\tableofcontents
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\part{Grundlagen des Programmierens}
|
||||||
|
|
||||||
\graphicspath{{programming/lectures/}{programming/lectures/images/}}
|
\graphicspath{{programming/lectures/}{programming/lectures/images/}}
|
||||||
\lstset{inputpath=programming/code}
|
\lstset{inputpath=programming/code}
|
||||||
\include{programming/lectures/programming}
|
\include{programming/lectures/programming}
|
||||||
|
|
||||||
|
\chapter{Graphische Darstellung}
|
||||||
|
|
||||||
|
\graphicspath{{designpattern/lecture}{designpattern/lecture/figures}}
|
||||||
|
\lstset{inputpath=designpattern/code/}
|
||||||
|
\include{designpattern/lecture/designpattern}
|
||||||
|
|
||||||
|
\chapter{Cheat-Sheet}
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\part{Grundlagen der Datenanalyse}
|
||||||
|
|
||||||
\graphicspath{{statistics/lecture/}{statistics/lecture/figures/}}
|
\graphicspath{{statistics/lecture/}{statistics/lecture/figures/}}
|
||||||
\lstset{inputpath=statistics/code}
|
\lstset{inputpath=statistics/code}
|
||||||
\include{statistics/lecture/statistics}
|
\include{statistics/lecture/statistics}
|
||||||
@ -26,7 +41,7 @@
|
|||||||
|
|
||||||
\graphicspath{{regression/lecture/}{regression/lecture/figures/}}
|
\graphicspath{{regression/lecture/}{regression/lecture/figures/}}
|
||||||
\lstset{inputpath=regression/code}
|
\lstset{inputpath=regression/code}
|
||||||
%\include{regression/lecture/linear_regression}
|
\include{regression/lecture/regression}
|
||||||
|
|
||||||
\graphicspath{{likelihood/lecture/}{likelihood/lecture/figures/}}
|
\graphicspath{{likelihood/lecture/}{likelihood/lecture/figures/}}
|
||||||
\lstset{inputpath=likelihood/code}
|
\lstset{inputpath=likelihood/code}
|
||||||
@ -41,8 +56,4 @@
|
|||||||
\lstset{inputpath=spike_trains/code/}
|
\lstset{inputpath=spike_trains/code/}
|
||||||
\include{spike_trains/lecture/psth_sta}
|
\include{spike_trains/lecture/psth_sta}
|
||||||
|
|
||||||
\graphicspath{{designpattern/lecture}{designpattern/lecture/figures}}
|
|
||||||
\lstset{inputpath=designpattern/code/}
|
|
||||||
\include{designpattern/lecture/designpattern}
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
@ -29,7 +29,7 @@ der Daten eingesetzt:
|
|||||||
unimodalen Normalverteilung sind Median, Mittelwert und Modus
|
unimodalen Normalverteilung sind Median, Mittelwert und Modus
|
||||||
identisch. Rechts: bei unsymmetrischen Verteilungen sind die drei
|
identisch. Rechts: bei unsymmetrischen Verteilungen sind die drei
|
||||||
Gr\"o{\ss}en nicht mehr identisch. Der Mittelwert wird am
|
Gr\"o{\ss}en nicht mehr identisch. Der Mittelwert wird am
|
||||||
st\"arksten von einem starken Schw\"anz der Verteilung
|
st\"arksten von einem starken Schwanz der Verteilung
|
||||||
herausgezogen. Der Median ist dagegen robuster, aber trotzdem
|
herausgezogen. Der Median ist dagegen robuster, aber trotzdem
|
||||||
nicht unbedingt identsich mit dem Modus.}
|
nicht unbedingt identsich mit dem Modus.}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
Reference in New Issue
Block a user