This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/statistics/lecture/statistics.tex

297 lines
14 KiB
TeX

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{\tr{Descriptive statistics}{Deskriptive Statistik}}
Bei der deskriptiven Statistik werden Datens\"atze durch wenige Kenngr\"o{\ss}en
\"ubersichtlich dargestellt.
Neben dem Histogramm, das die Wahrscheinlichkeitsverteilung der Daten
im Detail darstellt, werden u.a. folgende Kenngr\"o{\ss}en zur Beschreibung
der Daten eingesetzt:
\begin{description}
\item[Lagema{\ss}e] (``location'', ``central tendency''):
arithmetisches Mittel, Median, Modus (``Mode'')
\item[Streuungsma{\ss}e] (``spread'', ``dispersion''): Varianz,
Standardabweichung, Interquartilabstand,\linebreak Variations\-koeffizient
(``Coefficient of variation'')
\item[Shape]: Schiefe (``skewnees''), W\"olbung (``kurtosis'')
\item[Zusammenhangsma{\ss}e]: Pearson Korrelationskoeffizient,
Spearmans Rang\-korrelations\-koeffizient.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{\tr{Mode, median, quartile, etc.}{Modus, Median, Quartil, etc.}}
\begin{figure}[t]
\includegraphics[width=1\textwidth]{median}
\caption{\label{medianfig} Median, Mittelwert und Modus einer
Wahrscheinlichkeitsverteilung. Links: Bei der symmetrischen,
unimodalen Normalverteilung sind Median, Mittelwert und Modus
identisch. Rechts: bei unsymmetrischen Verteilungen sind die drei
Gr\"o{\ss}en nicht mehr identisch. Der Mittelwert wird am
st\"arksten von einem starken Schwanz der Verteilung
herausgezogen. Der Median ist dagegen robuster, aber trotzdem
nicht unbedingt identsich mit dem Modus.}
\end{figure}
Der Modus ist der h\"aufigste Wert, d.h. die Position des Maximums
einer Wahrscheinlichkeitsverteilung.
Der Median teilt eine Liste von Messwerten so in zwei H\"alften, dass
die eine H\"alfte der Daten nicht gr\"o{\ss}er und die andere H\"alfte
nicht kleiner als der Median ist (\figref{medianfig}).
\newpage
\begin{exercise}{mymedian.m}{}
\tr{Write a function \code{mymedian} that computes the median of a vector.}
{Schreibe eine Funktion \code{mymedian}, die den Median eines Vektors zur\"uckgibt.}
\end{exercise}
\matlab{} stellt die Funktion \code{median()} zur Berechnung des Medians bereit.
\newpage
\begin{exercise}{checkmymedian.m}{}
\tr{Write a script that tests whether your median function really
returns a median above which are the same number of data than
below. In particular the script should test data vectors of
different length.} {Schreibe ein Skript, das testet ob die
\code{mymedian} Funktion wirklich die Zahl zur\"uckgibt, \"uber
der genauso viele Datenwerte liegen wie darunter. Das Skript sollte
insbesondere verschieden lange Datenvektoren testen.}
\end{exercise}
Eine Wahrscheinlichkeitsverteilung kann weiter durch die Position
ihrere Quartile charakterisiert werden. Zwischen den Quartilen liegen
jeweils 25\,\% der Daten (\figref{quartilefig}). Perzentile erlauben
eine feinere Einteilung. Das 3. Quartil ist das 75. Perzentil, da
75\,\% der Daten unterhalb des 3. Quartils liegen.
\begin{figure}[t]
\includegraphics[width=1\textwidth]{quartile}
\caption{\label{quartilefig} Median und Quartile einer Normalverteilung.}
\end{figure}
% \begin{definition}[\tr{quartile}{Quartile}]
% Die Quartile Q1, Q2 und Q3 unterteilen die Daten in vier gleich
% gro{\ss}e Gruppen, die jeweils ein Viertel der Daten enthalten.
% Das mittlere Quartil entspricht dem Median.
% \end{definition}
% \begin{exercise}{quartiles.m}{}
% \tr{Write a function that computes the first, second, and third quartile of a vector.}
% {Schreibe eine Funktion, die das erste, zweite und dritte Quartil als Vektor zur\"uckgibt.}
% \end{exercise}
\begin{figure}[t]
\includegraphics[width=1\textwidth]{boxwhisker}
\caption{\label{boxwhiskerfig} Box-Whisker Plots sind gut geeignet
um mehrere unimodale Verteilungen miteinander zu vergleichen.
Hier sind es jeweils 40 normalverteilte Zufallszahlen.}
\end{figure}
Box-Whisker Plots sind eine h\"aufig verwendete Darstellung um die
Verteilung unimodaler Daten zu visualisieren und vergleichbar zu
machen mit anderen Daten. Dabei wird um den Median eine Box vom 1. zum
3. Quartil gezeichnet. Die Whiskers deuten den minimalen und den
maximalen Datenwert an (\figref{boxwhiskerfig}).
\begin{exercise}{boxwhisker.m}{}
\tr{Generate eine $40 \times 10$ matrix of random numbers and
illustrate their distribution in a box-whicker plot
(\code{boxplot()} function). How to interpret the plot?}
{Erzeuge ein $40 \times 10$ Matrix
von Zufallszahlen und illustriere ihre Verteilungen in einem
Box-Whisker Plot (\code{boxplot()} Funktion, lies die Hilfe!). Wie ist der
Box-Whisker Plot zu interpretieren? Was hat es mit den Ausreissern auf sich?
Wie kann man erreichen, dass die Whisker den kleinsten und den gr\"o{\ss}ten
Datenwert anzeigen? Warum sind die unterschiedlichen Box-Whiskers nicht alle gleich,
obwohl sie aus der selben Verteilung gezogen worden sind?}
\end{exercise}
\section{\tr{Histogram}{Histogramm}}
Histogramme z\"ahlen die H\"aufigkeit $n_i$ des Auftretens von
$N=\sum_{i=1}^M n_i$ Messwerten in $M$ Messbereichsklassen $i$ (Bins).
Die Klassen unterteilen den Wertebereich meist in angrenzende und
gleich gro{\ss}e Intervalle. Histogramme k\"onnen verwendet werden, um die
Wahrscheinlichkeitsverteilung der Messwerte abzusch\"atzen.
\begin{exercise}{rollthedie.m}{}
\tr{Write a function that simulates rolling a die $n$ times.}
{Schreibe eine Funktion, die das $n$-malige W\"urfeln mit einem W\"urfel simuliert.}
\end{exercise}
\begin{exercise}{diehistograms.m}{}
\tr{Plot histograms from rolling the die 20, 100, 1000 times. Use
the plain hist(x) function, force 6 bins via hist( x, 6 ), and set
meaningfull bins positions.} {Plotte Histogramme von 20, 100, und
1000-mal w\"urfeln. Benutze \code{hist(x)}, erzwinge sechs Bins
mit \code{hist(x,6)}, oder setze selbst sinnvolle Bins. Normiere
anschliessend das Histogram auf geeignete Weise.}
\end{exercise}
\begin{figure}[t]
\includegraphics[width=1\textwidth]{diehistograms}
\caption{\label{diehistogramsfig} \tr{Histograms of rolling a die
100 or 500 times. Left: plain histograms counting the frequency
of the six possible outcomes. Right: the same data normalized
to their sum.}{Histogramme des Ergebnisses von 100 oder 500 mal
W\"urfeln. Links: das absolute Histogramm z\"ahlt die Anzahl des
Auftretens jeder Augenzahl. Rechts: Normiert auf die Summe des
Histogramms werden die beiden Messungen untereinander als auch
mit der theoretischen Verteilung $P=1/6$ vergleichbar.}}
\end{figure}
\newpage
Bei ganzzahligen Messdaten (z.B. die Augenzahl eines W\"urfels oder
die Anzahl von Aktionspotentialen in einem bestimmten Zeitfenster)
kann f\"ur jede auftretende Zahl eine Klasse definiert werden. Damit
die H\"ohe der Histogrammbalken unabh\"angig von der Anzahl der
Messwerte wird, wird das Histogram auf die Anzahl der
Messwerte normiert (\figref{diehistogramsfig}). Die H\"ohe der
Histogrammbalken gibt dann die Wahrscheinlichkeit $P(x_i)$ des
Auftretens der Gr\"o{\ss}e $x_i$ in der $i$-ten Klasse an
\[ P_i = \frac{n_i}{N} = \frac{n_i}{\sum_{i=1}^M n_i} \; . \]
\section{\tr{Probability density function}{Wahrscheinlichkeitsdichte}}
Meistens haben wir es jedoch mit reellen Messgr\"o{\ss}en zu tun
(z.B. Gewicht von Tigern, L\"ange von Interspikeintervallen). Es
macht keinen Sinn dem Auftreten jeder einzelnen reelen Zahl eine
Wahrscheinlichkeit zuzuordnen, denn die Wahrscheinlichkeit genau den
Wert einer bestimmten reelen Zahl, z.B. 1.23456789, zu messen ist
gleich Null, da es unabz\"ahlbar viele reelle Zahlen gibt.
Sinnvoller ist es dagegen, nach der Wahrscheinlichkeit zu fragen, eine
Zahl aus einem bestimmten Bereich zu erhalten, z.B. die
Wahrscheinlichkeit $P(1.2<x<1.3)$, dass die Zahl $x$ einen Wert
zwischen 1.2 und 1.3 hat.
Im Grenzwert zu sehr kleinen Bereichen $\Delta x$ ist die Wahrscheinlichkeit
eines Wertes $x$ zwischen $x_0$ und $x_0+\Delta x$
\[ P(x_0<x<x_0+\Delta x) \approx p(x) \cdot \Delta x \; . \]
Die Gr\"o{\ss}e $p(x)$ ist eine sogenannte
``Wahrscheinlichkeitsdichte''. Sie ist keine einheitenlose
Wahrscheinlichkeit mit Werten zwischen Null und Eins, sondern kann
jeden positiven Wert annehmen und hat als Einheit den Kehrwert der
Einheit von $x$.
\begin{figure}[t]
\includegraphics[width=1\textwidth]{pdfprobabilities}
\caption{\label{pdfprobabilitiesfig} Wahrscheinlichkeiten bei
einer Wahrscheinlichkeitsdichtefunktion.}
\end{figure}
F\"ur beliebige Bereiche ist die Wahrscheinlichkeit f\"ur den Wert $x$ zwischen
$x_1$ und $x_2$ gegeben durch
\[ P(x_1 < x < x2) = \int\limits_{x_1}^{x_2} p(x) \, dx \; . \]
Da die Wahrscheinlichkeit irgendeines Wertes $x$ Eins ergeben muss gilt die Normierung
\begin{equation}
\label{pdfnorm}
P(-\infty < x < \infty) = \int\limits_{-\infty}^{+\infty} p(x) \, dx = 1 \; .
\end{equation}
Die gesamte Funktion $p(x)$, die jedem Wert $x$ einen
Wahrscheinlichkeitsdichte zuordnet wir auch
Wahrscheinlichkeitsdichtefunktion (``probability density function'',
``pdf'', oder kurz ``density'') genannt. Die bekannteste
Wahrscheinlichkeitsdichtefunktion ist die der Normalverteilung
\[ p_g(x) =
\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
--- die Gau{\ss}sche-Glockenkurve mit Mittelwert $\mu$ und
Standardabweichung $\sigma$.
\newpage
\begin{exercise}{gaussianpdf.m}{gaussianpdf.out}
\vspace{-3ex}
\begin{enumerate}
\item Plotte die Wahrscheinlichkeitsdichte der Normalverteilung $p_g(x)$.
\item Berechne f\"ur die Normalverteilung mit Mittelwert Null und
Standardabweichung Eins die Wahrscheinlichkeit, eine Zahl zwischen
0 und 1 zu erhalten.
\item Ziehe 1000 normalverteilte Zufallszahlen und bestimme von
diesen Zufallzahlen die Wahrscheinlichkeit der Zahlen zwischen
Null und Eins.
\item Berechne aus der Normalverteilung $\int_{-\infty}^{+\infty} p(x) \, dx$.
\end{enumerate}
\end{exercise}
\begin{figure}[t]
\includegraphics[width=1\textwidth]{pdfhistogram}
\caption{\label{pdfhistogramfig} \tr{Histograms of normally
distributed data with different bin sizes.}{Histogramme mit
verschiednenen Klassenbreiten eines Datensatzes von
normalverteilten Messwerten. Links: Die H\"ohe des absoluten
Histogramms h\"angt von der Klassenbreite ab. Rechts: Bei auf
das Integral normierten Histogrammen werden auch
unterschiedliche Klassenbreiten untereinander vergleichbar und
auch mit der theoretischen Wahrschinlichkeitsdichtefunktion
(blau).}}
\end{figure}
\begin{exercise}{gaussianbins.m}{}
\tr{Draw 100 random data from a Gaussian distribution and plot
histograms with different bin sizes of the data.} {Ziehe 100
normalverteilte Zufallszahlen und erzeuge Histogramme mit
unterschiedlichen Klassenbreiten. Was f\"allt auf?}
\end{exercise}
Damit Histogramme von reellen Messwerten trotz unterschiedlicher
Anzahl von Messungen und unterschiedlicher Klassenbreiten
untereinander vergleichbar werden und mit bekannten
Wahrscheinlichkeitsdichtefunktionen verglichen werden k\"onnen,
m\"ussen sie auf das Integral Eins normiert werden
\eqnref{pdfnorm}. Das Integral (nicht die Summe) \"uber das Histogramm
soll Eins ergeben --- denn die Wahrscheinlichkeit, dass irgendeiner
der Messwerte auftritt mu{\ss} Eins sein. Das Integral ist die
Fl\"ache des Histogramms, die sich aus der Fl\"ache der einzelnen
Histogrammbalken zusammen setzt. Die Balken des Histogramms haben die
H\"ohe $n_i$ und die Breite $\Delta x$. Die Gesamtfl\"ache $A$ des
Histogramms ist also
\[ A = \sum_{i=1}^N ( n_i \cdot \Delta x ) = \Delta x \sum_{i=1}^N n_i \]
und das normierte Histogramm hat die H\"ohe
\[ p(x_i) = \frac{n_i}{\Delta x \sum_{i=1}^N n_i} \]
Es muss also nicht nur durch die Summe, sondern auch durch die Breite
$\Delta x$ der Klassen geteilt werden (\figref{pdfhistogramfig}).
\begin{exercise}{gaussianbinsnorm.m}{}
Normiere das Histogramm der vorherigen \"Ubung zu einer Wahrscheinlichkeitsdichte.
\end{exercise}
\section{\tr{Correlations}{Korrelationen}}
\begin{figure}[tp]
\includegraphics[width=1\textwidth]{correlation}
\caption{\label{correlationfig} Korrelationen zwischen zwei
Datens\"atzen $x$ und $y$.}
\end{figure}
Bisher haben wir Eigenschaften einer einzelnen Me{\ss}gr\"o{\ss}e
angeschaut. Bei mehreren Me{\ss}gr\"o{\ss}en, kann nach
Abh\"angigkeiten zwischen den beiden Gr\"o{\ss}en gefragt werden. Der
Korrelations\-koeffizient
\[ r_{x,y} = \frac{Cov(x,y)}{\sigma_x \sigma_y} = \frac{\langle
(x-\langle x \rangle)(y-\langle y \rangle) \rangle}{\sqrt{\langle
(x-\langle x \rangle)^2} \rangle \sqrt{\langle (y-\langle y
\rangle)^2} \rangle} \]
quantifiziert einfache lineare Zusammenh\"ange \matlabfun{corr}. Der
Korrelationskoeffizient ist die Covarianz normiert durch die
Standardabweichungen. Perfekt korrelierte Variablen ergeben einen
Korrelationskoeffizienten von $+1$, antikorrelierte Daten einen
Korrelationskoeffizienten von $-1$ und nicht korrelierte Daten einen
Korrelationskoeffizienten nahe Null (\figrefb{correlationfig}).
Nichtlineare Abh\"angigkeiten werden von dem Korrelationskoeffizienten
nur unzureichend oder \"uberhaupt nicht erfasst (\figref{nonlincorrelationfig}).
\begin{figure}[tp]
\includegraphics[width=1\textwidth]{nonlincorrelation}
\caption{\label{nonlincorrelationfig} Nichtlineare Zusammenh\"ange
werden durch den Korrelationskoeffizienten nicht erfasst. Sowohl
die quadratische Abh\"angigkeit (links) als auch eine
Rauschkorrelation (rechts), bei der die Streuung der $y$-Werte von
$x$ abh\"angen, ergeben Korrelationskeffizienten nahe Null.
$\xi$ sind normalverteilte Zufallszahlen.}
\end{figure}