[spectral] updated transfer function for noisy systems
This commit is contained in:
parent
ccd1c5000a
commit
8b94ac1a7b
@ -46,6 +46,7 @@ predict the mean response $\langle R \rangle_n$, averaged over the
|
|||||||
noise, i.e. averaged over responses evoked by several presentations
|
noise, i.e. averaged over responses evoked by several presentations
|
||||||
of the same, frozen stimulus:
|
of the same, frozen stimulus:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
\label{transfernoise}
|
||||||
\langle R(\omega) \rangle_n = H(\omega) S(\omega)
|
\langle R(\omega) \rangle_n = H(\omega) S(\omega)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
@ -74,26 +75,17 @@ averages by $\langle \cdot \rangle$:
|
|||||||
The transfer function of a noisy system is estimated by dividing the
|
The transfer function of a noisy system is estimated by dividing the
|
||||||
cross spectrum by the power spectrum of the stimulus.
|
cross spectrum by the power spectrum of the stimulus.
|
||||||
|
|
||||||
Computing the squared gain like this
|
If we are interested in the gain of the transfer function, i.e. its magnitude, we get starting from Eq.~\eqref{transfernoise}
|
||||||
\begin{equation}
|
\begin{eqnarray}
|
||||||
|H(\omega)|^2 = \frac{R(\omega)R^*(\omega)}{S(\omega)S^*(\omega)}
|
|\langle R(\omega) \rangle_n| & = & |H(\omega)| |S(\omega)| \\
|
||||||
\end{equation}
|
\langle R(\omega) \rangle_n \langle R(\omega) \rangle_n^* & = & |H(\omega)|^2 S(\omega)S^*(\omega)\\
|
||||||
is not possible, it again requires to average over the noise
|
\langle \langle R(\omega) \rangle_n \langle R(\omega) \rangle_n^* \rangle_s & = & |H(\omega)|^2 \langle S(\omega)S^*(\omega) \rangle_s \\
|
||||||
\begin{equation}
|
|H(\omega)|^2 & = & \frac{\langle \langle R(\omega) \rangle_n \langle R(\omega) \rangle_n^* \rangle_s}{\langle S(\omega)S^*(\omega) \rangle_s} \\
|
||||||
|H(\omega)|^2 = \frac{\langle R(\omega)R^*(\omega) \rangle_n}{S(\omega)S^*(\omega)}
|
|H(\omega)|^2 & \ne & \frac{\langle \langle R(\omega) R^*(\omega) \rangle_n \rangle_s}{\langle S(\omega)S^*(\omega) \rangle_s}
|
||||||
\end{equation}
|
\end{eqnarray}
|
||||||
Subsequent averaging over stimuli leads to
|
For noisy systems, dividing the power spectrum of the response by the
|
||||||
\begin{equation}
|
power spectrum of the stimulus is not resulting in the squared gain of
|
||||||
|H(\omega)|^2 = \left\langle\frac{\langle R(\omega)R^*(\omega) \rangle_n}{S(\omega)S^*(\omega)} \right\rangle_s
|
the transfer function. Only for noise-free systems does this work.
|
||||||
\end{equation}
|
|
||||||
which is \emph{not} just the power spectrum $\langle R R^* \rangle$ of
|
|
||||||
the response devided by the power spectrum $\langle S S^* \rangle$ of
|
|
||||||
the stimulus
|
|
||||||
\begin{equation}
|
|
||||||
|H(\omega)|^2 \ne \frac{\langle\langle R(\omega)R^*(\omega) \rangle_n\rangle_s}{\langle S(\omega)S^*(\omega)\rangle_s}
|
|
||||||
\end{equation}
|
|
||||||
The gain can not be computed by simply dividing the response spectrum
|
|
||||||
by the stimulus spectrum.
|
|
||||||
|
|
||||||
\section{Coherence function}
|
\section{Coherence function}
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user