From 8b94ac1a7bab2e7fc7b1379aeb429efe9951e299 Mon Sep 17 00:00:00 2001 From: Jan Benda Date: Fri, 12 Mar 2021 22:58:55 +0100 Subject: [PATCH] [spectral] updated transfer function for noisy systems --- spectral/lecture/spectral.tex | 32 ++++++++++++-------------------- 1 file changed, 12 insertions(+), 20 deletions(-) diff --git a/spectral/lecture/spectral.tex b/spectral/lecture/spectral.tex index e00d405..eb745a5 100644 --- a/spectral/lecture/spectral.tex +++ b/spectral/lecture/spectral.tex @@ -46,6 +46,7 @@ predict the mean response $\langle R \rangle_n$, averaged over the noise, i.e. averaged over responses evoked by several presentations of the same, frozen stimulus: \begin{equation} + \label{transfernoise} \langle R(\omega) \rangle_n = H(\omega) S(\omega) \end{equation} @@ -74,26 +75,17 @@ averages by $\langle \cdot \rangle$: The transfer function of a noisy system is estimated by dividing the cross spectrum by the power spectrum of the stimulus. -Computing the squared gain like this -\begin{equation} - |H(\omega)|^2 = \frac{R(\omega)R^*(\omega)}{S(\omega)S^*(\omega)} -\end{equation} -is not possible, it again requires to average over the noise -\begin{equation} - |H(\omega)|^2 = \frac{\langle R(\omega)R^*(\omega) \rangle_n}{S(\omega)S^*(\omega)} -\end{equation} -Subsequent averaging over stimuli leads to -\begin{equation} - |H(\omega)|^2 = \left\langle\frac{\langle R(\omega)R^*(\omega) \rangle_n}{S(\omega)S^*(\omega)} \right\rangle_s -\end{equation} -which is \emph{not} just the power spectrum $\langle R R^* \rangle$ of -the response devided by the power spectrum $\langle S S^* \rangle$ of -the stimulus -\begin{equation} - |H(\omega)|^2 \ne \frac{\langle\langle R(\omega)R^*(\omega) \rangle_n\rangle_s}{\langle S(\omega)S^*(\omega)\rangle_s} -\end{equation} -The gain can not be computed by simply dividing the response spectrum -by the stimulus spectrum. +If we are interested in the gain of the transfer function, i.e. its magnitude, we get starting from Eq.~\eqref{transfernoise} +\begin{eqnarray} + |\langle R(\omega) \rangle_n| & = & |H(\omega)| |S(\omega)| \\ + \langle R(\omega) \rangle_n \langle R(\omega) \rangle_n^* & = & |H(\omega)|^2 S(\omega)S^*(\omega)\\ + \langle \langle R(\omega) \rangle_n \langle R(\omega) \rangle_n^* \rangle_s & = & |H(\omega)|^2 \langle S(\omega)S^*(\omega) \rangle_s \\ + |H(\omega)|^2 & = & \frac{\langle \langle R(\omega) \rangle_n \langle R(\omega) \rangle_n^* \rangle_s}{\langle S(\omega)S^*(\omega) \rangle_s} \\ + |H(\omega)|^2 & \ne & \frac{\langle \langle R(\omega) R^*(\omega) \rangle_n \rangle_s}{\langle S(\omega)S^*(\omega) \rangle_s} +\end{eqnarray} +For noisy systems, dividing the power spectrum of the response by the +power spectrum of the stimulus is not resulting in the squared gain of +the transfer function. Only for noise-free systems does this work. \section{Coherence function}