refactoring finished for now
This commit is contained in:
parent
9985686d53
commit
ddf7bd545a
525
code/chirpdetection.py
Normal file → Executable file
525
code/chirpdetection.py
Normal file → Executable file
@ -1,20 +1,22 @@
|
||||
from itertools import compress
|
||||
from dataclasses import dataclass
|
||||
|
||||
from IPython import embed
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.signal import find_peaks
|
||||
from scipy.ndimage import gaussian_filter1d
|
||||
from thunderfish.dataloader import DataLoader
|
||||
from thunderfish.powerspectrum import spectrogram, decibel
|
||||
from sklearn.preprocessing import normalize
|
||||
|
||||
from modules.filters import bandpass_filter, envelope, highpass_filter
|
||||
from modules.filehandling import ConfLoader, LoadData, make_outputdir
|
||||
from modules.datahandling import flatten, purge_duplicates, group_timestamps
|
||||
from modules.plotstyle import PlotStyle
|
||||
from modules.logger import makeLogger
|
||||
from modules.datahandling import (
|
||||
flatten,
|
||||
purge_duplicates,
|
||||
group_timestamps,
|
||||
instantaneous_frequency,
|
||||
)
|
||||
|
||||
logger = makeLogger(__name__)
|
||||
|
||||
@ -28,6 +30,7 @@ class PlotBuffer:
|
||||
Buffer to save data that is created in the main detection loop
|
||||
and plot it outside the detecion loop.
|
||||
"""
|
||||
|
||||
config: ConfLoader
|
||||
t0: float
|
||||
dt: float
|
||||
@ -85,8 +88,9 @@ class PlotBuffer:
|
||||
plot_spectrogram(axs[0], data_oi, self.data.raw_rate, self.t0)
|
||||
|
||||
for chirp in chirps:
|
||||
axs[0].scatter(chirp, np.median(self.frequency),
|
||||
c=ps.black, marker="x")
|
||||
axs[0].scatter(
|
||||
chirp, np.median(self.frequency), c=ps.black, marker="x"
|
||||
)
|
||||
|
||||
# plot waveform of filtered signal
|
||||
axs[1].plot(self.time, self.baseline, c=ps.green)
|
||||
@ -94,7 +98,7 @@ class PlotBuffer:
|
||||
# plot waveform of filtered search signal
|
||||
axs[2].plot(self.time, self.search)
|
||||
|
||||
# plot baseline instantaneos frequency
|
||||
# plot baseline instantaneous frequency
|
||||
axs[3].plot(self.frequency_time, self.frequency)
|
||||
|
||||
# plot filtered and rectified envelope
|
||||
@ -145,7 +149,7 @@ class PlotBuffer:
|
||||
|
||||
|
||||
def plot_spectrogram(
|
||||
axis, signal: np.ndarray, samplerate: float, t0: float
|
||||
axis, signal: np.ndarray, samplerate: float, window_start_seconds: float
|
||||
) -> None:
|
||||
"""
|
||||
Plot a spectrogram of a signal.
|
||||
@ -158,7 +162,7 @@ def plot_spectrogram(
|
||||
Signal to plot the spectrogram from.
|
||||
samplerate : float
|
||||
Samplerate of the signal.
|
||||
t0 : float
|
||||
window_start_seconds : float
|
||||
Start time of the signal.
|
||||
"""
|
||||
|
||||
@ -172,73 +176,26 @@ def plot_spectrogram(
|
||||
overlap_frac=0.5,
|
||||
)
|
||||
|
||||
# axis.pcolormesh(
|
||||
# spec_times + t0,
|
||||
# spec_freqs,
|
||||
# decibel(spec_power),
|
||||
# )
|
||||
axis.imshow(
|
||||
decibel(spec_power),
|
||||
extent=[spec_times[0] + t0, spec_times[-1] +
|
||||
t0, spec_freqs[0], spec_freqs[-1]],
|
||||
extent=[
|
||||
spec_times[0] + window_start_seconds,
|
||||
spec_times[-1] + window_start_seconds,
|
||||
spec_freqs[0],
|
||||
spec_freqs[-1],
|
||||
],
|
||||
aspect="auto",
|
||||
origin="lower",
|
||||
interpolation="gaussian",
|
||||
)
|
||||
|
||||
|
||||
def instantaneos_frequency(
|
||||
signal: np.ndarray, samplerate: int
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Compute the instantaneous frequency of a signal.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
signal : np.ndarray
|
||||
Signal to compute the instantaneous frequency from.
|
||||
samplerate : int
|
||||
Samplerate of the signal.
|
||||
|
||||
Returns
|
||||
-------
|
||||
tuple[np.ndarray, np.ndarray]
|
||||
|
||||
"""
|
||||
# calculate instantaneos frequency with zero crossings
|
||||
roll_signal = np.roll(signal, shift=1)
|
||||
time_signal = np.arange(len(signal)) / samplerate
|
||||
period_index = np.arange(len(signal))[(roll_signal < 0) & (signal >= 0)][
|
||||
1:-1
|
||||
]
|
||||
|
||||
upper_bound = np.abs(signal[period_index])
|
||||
lower_bound = np.abs(signal[period_index - 1])
|
||||
upper_time = np.abs(time_signal[period_index])
|
||||
lower_time = np.abs(time_signal[period_index - 1])
|
||||
|
||||
# create ratio
|
||||
lower_ratio = lower_bound / (lower_bound + upper_bound)
|
||||
|
||||
# appy to time delta
|
||||
time_delta = upper_time - lower_time
|
||||
true_zero = lower_time + lower_ratio * time_delta
|
||||
|
||||
# create new time array
|
||||
inst_freq_time = true_zero[:-1] + 0.5 * np.diff(true_zero)
|
||||
|
||||
# compute frequency
|
||||
inst_freq = gaussian_filter1d(1 / np.diff(true_zero), 5)
|
||||
|
||||
return inst_freq_time, inst_freq
|
||||
|
||||
|
||||
def double_bandpass(
|
||||
data: DataLoader,
|
||||
def extract_frequency_bands(
|
||||
raw_data: np.ndarray,
|
||||
samplerate: int,
|
||||
freqs: np.ndarray,
|
||||
search_freq: float,
|
||||
config: ConfLoader
|
||||
baseline_track: np.ndarray,
|
||||
searchband_center: float,
|
||||
minimal_bandwidth: float,
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Apply a bandpass filter to the baseline of a signal and a second bandpass
|
||||
@ -246,14 +203,16 @@ def double_bandpass(
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : DataLoader
|
||||
raw_data : np.ndarray
|
||||
Data to apply the filter to.
|
||||
samplerate : int
|
||||
Samplerate of the signal.
|
||||
freqs : np.ndarray
|
||||
baseline_track : np.ndarray
|
||||
Tracked fundamental frequencies of the signal.
|
||||
search_freq : float
|
||||
searchband_center: float
|
||||
Frequency to search for above or below the baseline.
|
||||
minimal_bandwidth : float
|
||||
Minimal bandwidth of the filter.
|
||||
|
||||
Returns
|
||||
-------
|
||||
@ -261,28 +220,30 @@ def double_bandpass(
|
||||
|
||||
"""
|
||||
# compute boundaries to filter baseline
|
||||
q25, q50, q75 = np.percentile(freqs, [25, 50, 75])
|
||||
q25, q50, q75 = np.percentile(baseline_track, [25, 50, 75])
|
||||
|
||||
# check if percentile delta is too small
|
||||
if q75 - q25 < 5:
|
||||
median = np.median(freqs)
|
||||
q25, q75 = median - 2.5, median + 2.5
|
||||
if q75 - q25 < 10:
|
||||
q25, q75 = q50 - minimal_bandwidth / 2, q50 + minimal_bandwidth / 2
|
||||
|
||||
# filter baseline
|
||||
filtered_baseline = bandpass_filter(data, samplerate, lowf=q25, highf=q75)
|
||||
filtered_baseline = bandpass_filter(
|
||||
raw_data, samplerate, lowf=q25, highf=q75
|
||||
)
|
||||
|
||||
# filter search area
|
||||
filtered_search_freq = bandpass_filter(
|
||||
data, samplerate,
|
||||
lowf=search_freq + q50 - config.search_bandwidth / 2,
|
||||
highf=search_freq + q50 + config.search_bandwidth / 2
|
||||
raw_data,
|
||||
samplerate,
|
||||
lowf=searchband_center + q50 - minimal_bandwidth / 2,
|
||||
highf=searchband_center + q50 + minimal_bandwidth / 2,
|
||||
)
|
||||
|
||||
return filtered_baseline, filtered_search_freq
|
||||
|
||||
|
||||
def freqmedian_allfish(
|
||||
data: LoadData, t0: float, dt: float
|
||||
def window_median_all_track_ids(
|
||||
data: LoadData, window_start_seconds: float, window_duration_seconds: float
|
||||
) -> tuple[float, list[int]]:
|
||||
"""
|
||||
Calculate the median frequency of all fish in a given time window.
|
||||
@ -291,9 +252,9 @@ def freqmedian_allfish(
|
||||
----------
|
||||
data : LoadData
|
||||
Data to calculate the median frequency from.
|
||||
t0 : float
|
||||
window_start_seconds : float
|
||||
Start time of the window.
|
||||
dt : float
|
||||
window_duration_seconds : float
|
||||
Duration of the window.
|
||||
|
||||
Returns
|
||||
@ -308,8 +269,11 @@ def freqmedian_allfish(
|
||||
for _, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
|
||||
window_idx = np.arange(len(data.idx))[
|
||||
(data.ident == track_id)
|
||||
& (data.time[data.idx] >= t0)
|
||||
& (data.time[data.idx] <= (t0 + dt))
|
||||
& (data.time[data.idx] >= window_start_seconds)
|
||||
& (
|
||||
data.time[data.idx]
|
||||
<= (window_start_seconds + window_duration_seconds)
|
||||
)
|
||||
]
|
||||
|
||||
if len(data.freq[window_idx]) > 0:
|
||||
@ -323,7 +287,7 @@ def freqmedian_allfish(
|
||||
return median_freq, track_ids
|
||||
|
||||
|
||||
def find_search_freq(
|
||||
def find_searchband(
|
||||
freq_temp: np.ndarray,
|
||||
median_ids: np.ndarray,
|
||||
median_freq: np.ndarray,
|
||||
@ -331,15 +295,16 @@ def find_search_freq(
|
||||
data: LoadData,
|
||||
) -> float:
|
||||
"""
|
||||
Find the search frequency for each fish by checking which fish EODs are
|
||||
above the current EOD and finding a gap in them.
|
||||
Find the search frequency band for each fish by checking which fish EODs
|
||||
are above the current EOD and finding a gap in them.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
freq_temp : np.ndarray
|
||||
Current EOD frequency array / the current fish of interest.
|
||||
median_ids : np.ndarray
|
||||
Array of track IDs of the medians of all other fish in the current window.
|
||||
Array of track IDs of the medians of all other fish in the current
|
||||
window.
|
||||
median_freq : np.ndarray
|
||||
Array of median frequencies of all other fish in the current window.
|
||||
config : ConfLoader
|
||||
@ -421,7 +386,8 @@ def find_search_freq(
|
||||
longest_search_window = search_windows[np.argmax(search_windows_lens)]
|
||||
|
||||
search_freq = (
|
||||
longest_search_window[-1] - longest_search_window[0]) / 2
|
||||
longest_search_window[-1] - longest_search_window[0]
|
||||
) / 2
|
||||
|
||||
else:
|
||||
search_freq = config.default_search_freq
|
||||
@ -431,7 +397,11 @@ def find_search_freq(
|
||||
|
||||
def main(datapath: str, plot: str) -> None:
|
||||
|
||||
assert plot in ["save", "show", "false"]
|
||||
assert plot in [
|
||||
"save",
|
||||
"show",
|
||||
"false",
|
||||
], "plot must be 'save', 'show' or 'false'"
|
||||
|
||||
# load raw file
|
||||
data = LoadData(datapath)
|
||||
@ -444,13 +414,15 @@ def main(datapath: str, plot: str) -> None:
|
||||
window_overlap = config.overlap * data.raw_rate
|
||||
window_edge = config.edge * data.raw_rate
|
||||
|
||||
# check if window duration is even
|
||||
# check if window duration and window ovelap is even, otherwise the half
|
||||
# of the duration or window overlap would return a float, thus an
|
||||
# invalid index
|
||||
|
||||
if window_duration % 2 == 0:
|
||||
window_duration = int(window_duration)
|
||||
else:
|
||||
raise ValueError("Window duration must be even.")
|
||||
|
||||
# check if window ovelap is even
|
||||
if window_overlap % 2 == 0:
|
||||
window_overlap = int(window_overlap)
|
||||
else:
|
||||
@ -460,16 +432,16 @@ def main(datapath: str, plot: str) -> None:
|
||||
raw_time = np.arange(data.raw.shape[0]) / data.raw_rate
|
||||
|
||||
# good chirp times for data: 2022-06-02-10_00
|
||||
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
|
||||
dt = 60 * data.raw_rate
|
||||
window_start_seconds = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
|
||||
window_duration_seconds = 60 * data.raw_rate
|
||||
|
||||
# t0 = 0
|
||||
# dt = data.raw.shape[0]
|
||||
|
||||
# generate starting points of rolling window
|
||||
window_starts = np.arange(
|
||||
t0,
|
||||
t0 + dt,
|
||||
window_start_indices = np.arange(
|
||||
window_start_seconds,
|
||||
window_start_seconds + window_duration_seconds,
|
||||
window_duration - (window_overlap + 2 * window_edge),
|
||||
dtype=int,
|
||||
)
|
||||
@ -478,19 +450,20 @@ def main(datapath: str, plot: str) -> None:
|
||||
multiwindow_chirps = []
|
||||
multiwindow_ids = []
|
||||
|
||||
for st, start_index in enumerate(window_starts):
|
||||
for st, window_start_index in enumerate(window_start_indices):
|
||||
|
||||
logger.info(f"Processing window {st} of {len(window_starts)}")
|
||||
logger.info(f"Processing window {st+1} of {len(window_start_indices)}")
|
||||
|
||||
# make t0 and dt
|
||||
t0 = start_index / data.raw_rate
|
||||
dt = window_duration / data.raw_rate
|
||||
window_start_seconds = window_start_index / data.raw_rate
|
||||
window_duration_seconds = window_duration / data.raw_rate
|
||||
|
||||
# set index window
|
||||
stop_index = start_index + window_duration
|
||||
window_stop_index = window_start_index + window_duration
|
||||
|
||||
# calucate median of fish frequencies in window
|
||||
median_freq, median_ids = freqmedian_allfish(data, t0, dt)
|
||||
median_freq, median_ids = window_median_all_track_ids(
|
||||
data, window_start_seconds, window_duration_seconds
|
||||
)
|
||||
|
||||
# iterate through all fish
|
||||
for tr, track_id in enumerate(
|
||||
@ -500,48 +473,57 @@ def main(datapath: str, plot: str) -> None:
|
||||
logger.debug(f"Processing track {tr} of {len(data.ids)}")
|
||||
|
||||
# get index of track data in this time window
|
||||
window_idx = np.arange(len(data.idx))[
|
||||
track_window_index = np.arange(len(data.idx))[
|
||||
(data.ident == track_id)
|
||||
& (data.time[data.idx] >= t0)
|
||||
& (data.time[data.idx] <= (t0 + dt))
|
||||
& (data.time[data.idx] >= window_start_seconds)
|
||||
& (
|
||||
data.time[data.idx]
|
||||
<= (window_start_seconds + window_duration_seconds)
|
||||
)
|
||||
]
|
||||
|
||||
# get tracked frequencies and their times
|
||||
freq_temp = data.freq[window_idx]
|
||||
powers_temp = data.powers[window_idx, :]
|
||||
current_frequencies = data.freq[track_window_index]
|
||||
current_powers = data.powers[track_window_index, :]
|
||||
|
||||
# approximate sampling rate to compute expected durations if there
|
||||
# is data available for this time window for this fish id
|
||||
|
||||
track_samplerate = np.mean(1 / np.diff(data.time))
|
||||
expected_duration = ((t0 + dt) - t0) * track_samplerate
|
||||
expected_duration = (
|
||||
(window_start_seconds + window_duration_seconds)
|
||||
- window_start_seconds
|
||||
) * track_samplerate
|
||||
|
||||
# check if tracked data available in this window
|
||||
if len(freq_temp) < expected_duration * 0.5:
|
||||
if len(current_frequencies) < expected_duration / 2:
|
||||
logger.warning(
|
||||
f"Track {track_id} has no data in window {st}, skipping."
|
||||
)
|
||||
continue
|
||||
|
||||
# check if there are powers available in this window
|
||||
nanchecker = np.unique(np.isnan(powers_temp))
|
||||
if (len(nanchecker) == 1) and nanchecker[0]:
|
||||
nanchecker = np.unique(np.isnan(current_powers))
|
||||
if (len(nanchecker) == 1) and nanchecker[0] is True:
|
||||
logger.warning(
|
||||
f"No powers available for track {track_id} window {st}, \
|
||||
skipping."
|
||||
f"No powers available for track {track_id} window {st},"
|
||||
"skipping."
|
||||
)
|
||||
continue
|
||||
|
||||
# find the strongest electrodes for the current fish in the current
|
||||
# window
|
||||
best_electrodes = np.argsort(np.nanmean(powers_temp, axis=0))[
|
||||
-config.number_electrodes:
|
||||
]
|
||||
|
||||
best_electrode_index = np.argsort(
|
||||
np.nanmean(current_powers, axis=0)
|
||||
)[-config.number_electrodes:]
|
||||
|
||||
# find a frequency above the baseline of the current fish in which
|
||||
# no other fish is active to search for chirps there
|
||||
search_freq = find_search_freq(
|
||||
|
||||
search_frequency = find_searchband(
|
||||
config=config,
|
||||
freq_temp=freq_temp,
|
||||
freq_temp=current_frequencies,
|
||||
median_ids=median_ids,
|
||||
data=data,
|
||||
median_freq=median_freq,
|
||||
@ -549,153 +531,219 @@ def main(datapath: str, plot: str) -> None:
|
||||
|
||||
# add all chirps that are detected on mulitple electrodes for one
|
||||
# fish fish in one window to this list
|
||||
|
||||
multielectrode_chirps = []
|
||||
|
||||
# iterate through electrodes
|
||||
for el, electrode in enumerate(best_electrodes):
|
||||
for el, electrode_index in enumerate(best_electrode_index):
|
||||
|
||||
logger.debug(
|
||||
f"Processing electrode {el} of {len(best_electrodes)}"
|
||||
f"Processing electrode {el+1} of "
|
||||
f"{len(best_electrode_index)}"
|
||||
)
|
||||
|
||||
# LOAD DATA FOR CURRENT ELECTRODE AND CURRENT FISH ------------
|
||||
|
||||
# load region of interest of raw data file
|
||||
data_oi = data.raw[start_index:stop_index, :]
|
||||
time_oi = raw_time[start_index:stop_index]
|
||||
current_raw_data = data.raw[
|
||||
window_start_index:window_stop_index, electrode_index
|
||||
]
|
||||
current_raw_time = raw_time[
|
||||
window_start_index:window_stop_index
|
||||
]
|
||||
|
||||
# EXTRACT FEATURES --------------------------------------------
|
||||
|
||||
# filter baseline and above
|
||||
baseline, search = double_bandpass(
|
||||
data_oi[:, electrode],
|
||||
data.raw_rate,
|
||||
freq_temp,
|
||||
search_freq,
|
||||
config=config,
|
||||
baselineband, searchband = extract_frequency_bands(
|
||||
raw_data=current_raw_data,
|
||||
samplerate=data.raw_rate,
|
||||
baseline_track=current_frequencies,
|
||||
searchband_center=search_frequency,
|
||||
minimal_bandwidth=config.minimal_bandwidth,
|
||||
)
|
||||
|
||||
# compute instantaneous frequency on narrow signal
|
||||
baseline_freq_time, baseline_freq = instantaneos_frequency(
|
||||
baseline, data.raw_rate
|
||||
)
|
||||
# compute envelope of baseline band to find dips
|
||||
# in the baseline envelope
|
||||
|
||||
# compute envelopes
|
||||
baseline_envelope_unfiltered = envelope(
|
||||
baseline, data.raw_rate, config.envelope_cutoff
|
||||
signal=baselineband,
|
||||
samplerate=data.raw_rate,
|
||||
cutoff_frequency=config.baseline_envelope_cutoff,
|
||||
)
|
||||
|
||||
# highpass filter baseline envelope to remove slower
|
||||
# fluctuations e.g. due to motion envelope
|
||||
|
||||
baseline_envelope = bandpass_filter(
|
||||
signal=baseline_envelope_unfiltered,
|
||||
samplerate=data.raw_rate,
|
||||
lowf=config.baseline_envelope_bandpass_lowf,
|
||||
highf=config.baseline_envelope_bandpass_highf,
|
||||
)
|
||||
|
||||
# highbass filter introduced filter effects, i.e. oscillations
|
||||
# around peaks. Compute the envelope of the highpass filtered
|
||||
# and inverted baseline envelope to remove these oscillations
|
||||
|
||||
baseline_envelope = -baseline_envelope
|
||||
|
||||
baseline_envelope = envelope(
|
||||
signal=baseline_envelope,
|
||||
samplerate=data.raw_rate,
|
||||
cutoff_frequency=config.baseline_envelope_envelope_cutoff,
|
||||
)
|
||||
|
||||
# compute the envelope of the search band. Peaks in the search
|
||||
# band envelope correspond to troughs in the baseline envelope
|
||||
# during chirps
|
||||
|
||||
search_envelope = envelope(
|
||||
search, data.raw_rate, config.envelope_cutoff
|
||||
signal=searchband,
|
||||
samplerate=data.raw_rate,
|
||||
cutoff_frequency=config.search_envelope_cutoff,
|
||||
)
|
||||
|
||||
# highpass filter envelopes
|
||||
baseline_envelope = highpass_filter(
|
||||
baseline_envelope_unfiltered,
|
||||
data.raw_rate,
|
||||
config.envelope_highpass_cutoff,
|
||||
# compute instantaneous frequency of the baseline band to find
|
||||
# anomalies during a chirp, i.e. a frequency jump upwards or
|
||||
# sometimes downwards. We do not fully understand why the
|
||||
# instantaneous frequency can also jump downwards during a
|
||||
# chirp. This phenomenon is only observed on chirps on a narrow
|
||||
# filtered baseline such as the one we are working with.
|
||||
|
||||
(
|
||||
baseline_frequency_time,
|
||||
baseline_frequency,
|
||||
) = instantaneous_frequency(
|
||||
signal=baselineband,
|
||||
samplerate=data.raw_rate,
|
||||
smoothing_window=config.baseline_frequency_smoothing,
|
||||
)
|
||||
|
||||
# envelopes of filtered envelope of filtered baseline
|
||||
baseline_envelope = envelope(
|
||||
np.abs(baseline_envelope),
|
||||
data.raw_rate,
|
||||
config.envelope_envelope_cutoff,
|
||||
# bandpass filter the instantaneous frequency to remove slow
|
||||
# fluctuations. Just as with the baseline envelope, we then
|
||||
# compute the envelope of the signal to remove the oscillations
|
||||
# around the peaks
|
||||
|
||||
baseline_frequency_samplerate = np.mean(
|
||||
np.diff(baseline_frequency_time)
|
||||
)
|
||||
|
||||
baseline_frequency_filtered = np.abs(
|
||||
baseline_frequency - np.median(baseline_frequency)
|
||||
)
|
||||
|
||||
# bandpass filter the instantaneous frequency to put it to 0
|
||||
inst_freq_filtered = bandpass_filter(
|
||||
baseline_freq,
|
||||
data.raw_rate,
|
||||
lowf=config.instantaneous_lowf,
|
||||
highf=config.instantaneous_highf,
|
||||
baseline_frequency_filtered = highpass_filter(
|
||||
signal=baseline_frequency_filtered,
|
||||
samplerate=baseline_frequency_samplerate,
|
||||
cutoff=config.baseline_frequency_highpass_cutoff,
|
||||
)
|
||||
|
||||
baseline_frequency_filtered = envelope(
|
||||
signal=-baseline_frequency_filtered,
|
||||
samplerate=baseline_frequency_samplerate,
|
||||
cutoff_frequency=config.baseline_frequency_envelope_cutoff,
|
||||
)
|
||||
|
||||
# CUT OFF OVERLAP ---------------------------------------------
|
||||
|
||||
# overwrite raw time to valid region, i.e. cut off snippet at
|
||||
# start and end of each window to remove filter effects
|
||||
valid = np.arange(
|
||||
# cut off snippet at start and end of each window to remove
|
||||
# filter effects
|
||||
|
||||
# get arrays with raw samplerate without edges
|
||||
no_edges = np.arange(
|
||||
int(window_edge), len(baseline_envelope) - int(window_edge)
|
||||
)
|
||||
baseline_envelope_unfiltered = baseline_envelope_unfiltered[
|
||||
valid
|
||||
]
|
||||
baseline_envelope = baseline_envelope[valid]
|
||||
search_envelope = search_envelope[valid]
|
||||
current_raw_time = current_raw_time[no_edges]
|
||||
baselineband = baselineband[no_edges]
|
||||
searchband = searchband[no_edges]
|
||||
baseline_envelope = baseline_envelope[no_edges]
|
||||
search_envelope = search_envelope[no_edges]
|
||||
|
||||
# get inst freq valid snippet
|
||||
valid_t0 = int(window_edge) / data.raw_rate
|
||||
valid_t1 = baseline_freq_time[-1] - (
|
||||
# get instantaneous frequency withoup edges
|
||||
no_edges_t0 = int(window_edge) / data.raw_rate
|
||||
no_edges_t1 = baseline_frequency_time[-1] - (
|
||||
int(window_edge) / data.raw_rate
|
||||
)
|
||||
no_edges = (baseline_frequency_time >= no_edges_t0) & (
|
||||
baseline_frequency_time <= no_edges_t1
|
||||
)
|
||||
|
||||
inst_freq_filtered = inst_freq_filtered[
|
||||
(baseline_freq_time >= valid_t0)
|
||||
& (baseline_freq_time <= valid_t1)
|
||||
]
|
||||
|
||||
baseline_freq = baseline_freq[
|
||||
(baseline_freq_time >= valid_t0)
|
||||
& (baseline_freq_time <= valid_t1)
|
||||
]
|
||||
|
||||
baseline_freq_time = (
|
||||
baseline_freq_time[
|
||||
(baseline_freq_time >= valid_t0)
|
||||
& (baseline_freq_time <= valid_t1)
|
||||
baseline_frequency_filtered = baseline_frequency_filtered[
|
||||
no_edges
|
||||
]
|
||||
+ t0
|
||||
baseline_frequency = baseline_frequency[no_edges]
|
||||
baseline_frequency_time = (
|
||||
baseline_frequency_time[no_edges] + window_start_seconds
|
||||
)
|
||||
|
||||
time_oi = time_oi[valid]
|
||||
baseline = baseline[valid]
|
||||
search = search[valid]
|
||||
|
||||
# NORMALIZE ---------------------------------------------------
|
||||
|
||||
# normalize all three feature arrays to the same range to make
|
||||
# peak detection simpler
|
||||
|
||||
baseline_envelope = normalize([baseline_envelope])[0]
|
||||
search_envelope = normalize([search_envelope])[0]
|
||||
inst_freq_filtered = normalize([np.abs(inst_freq_filtered)])[0]
|
||||
baseline_frequency_filtered = normalize(
|
||||
[baseline_frequency_filtered]
|
||||
)[0]
|
||||
|
||||
# PEAK DETECTION ----------------------------------------------
|
||||
|
||||
prominence = config.prominence
|
||||
|
||||
# detect peaks baseline_enelope
|
||||
baseline_peaks, _ = find_peaks(
|
||||
baseline_envelope, prominence=prominence
|
||||
baseline_peak_indices, _ = find_peaks(
|
||||
baseline_envelope, prominence=config.prominence
|
||||
)
|
||||
# detect peaks search_envelope
|
||||
search_peaks, _ = find_peaks(
|
||||
search_envelope, prominence=prominence
|
||||
search_peak_indices, _ = find_peaks(
|
||||
search_envelope, prominence=config.prominence
|
||||
)
|
||||
# detect peaks inst_freq_filtered
|
||||
inst_freq_peaks, _ = find_peaks(
|
||||
inst_freq_filtered, prominence=prominence
|
||||
frequency_peak_indices, _ = find_peaks(
|
||||
baseline_frequency_filtered, prominence=config.prominence
|
||||
)
|
||||
|
||||
# DETECT CHIRPS IN SEARCH WINDOW ------------------------------
|
||||
|
||||
# get the peak timestamps from the peak indices
|
||||
baseline_ts = time_oi[baseline_peaks]
|
||||
search_ts = time_oi[search_peaks]
|
||||
freq_ts = baseline_freq_time[inst_freq_peaks]
|
||||
baseline_peak_timestamps = current_raw_time[
|
||||
baseline_peak_indices
|
||||
]
|
||||
search_peak_timestamps = current_raw_time[search_peak_indices]
|
||||
frequency_peak_timestamps = baseline_frequency_time[
|
||||
frequency_peak_indices
|
||||
]
|
||||
|
||||
# check if one list is empty and if so, skip to the next
|
||||
# electrode because a chirp cannot be detected if one is empty
|
||||
if (
|
||||
len(baseline_ts) == 0
|
||||
or len(search_ts) == 0
|
||||
or len(freq_ts) == 0
|
||||
):
|
||||
|
||||
one_feature_empty = (
|
||||
len(baseline_peak_timestamps) == 0
|
||||
or len(search_peak_timestamps) == 0
|
||||
or len(frequency_peak_timestamps) == 0
|
||||
)
|
||||
|
||||
if one_feature_empty:
|
||||
continue
|
||||
|
||||
# group peak across feature arrays but only if they
|
||||
# occur in all 3 feature arrays
|
||||
|
||||
sublists = [
|
||||
list(baseline_peak_timestamps),
|
||||
list(search_peak_timestamps),
|
||||
list(frequency_peak_timestamps),
|
||||
]
|
||||
|
||||
singleelectrode_chirps = group_timestamps(
|
||||
[list(baseline_ts), list(search_ts), list(freq_ts)],
|
||||
3,
|
||||
config.chirp_window_threshold,
|
||||
sublists=sublists,
|
||||
at_least_in=3,
|
||||
difference_threshold=config.chirp_window_threshold,
|
||||
)
|
||||
|
||||
# check it there are chirps detected after grouping, continue
|
||||
# with the loop if not
|
||||
|
||||
if len(singleelectrode_chirps) == 0:
|
||||
continue
|
||||
|
||||
@ -703,57 +751,62 @@ def main(datapath: str, plot: str) -> None:
|
||||
multielectrode_chirps.append(singleelectrode_chirps)
|
||||
|
||||
# only initialize the plotting buffer if chirps are detected
|
||||
if (
|
||||
chirp_detected = (
|
||||
(el == config.number_electrodes - 1)
|
||||
& (len(singleelectrode_chirps) > 0)
|
||||
& (plot in ["show", "save"])
|
||||
):
|
||||
)
|
||||
|
||||
if chirp_detected:
|
||||
|
||||
logger.debug("Detected chirp, ititialize buffer ...")
|
||||
|
||||
# save data to Buffer
|
||||
buffer = PlotBuffer(
|
||||
config=config,
|
||||
t0=t0,
|
||||
dt=dt,
|
||||
electrode=electrode,
|
||||
t0=window_start_seconds,
|
||||
dt=window_duration_seconds,
|
||||
electrode=electrode_index,
|
||||
track_id=track_id,
|
||||
data=data,
|
||||
time=time_oi,
|
||||
baseline=baseline,
|
||||
time=current_raw_time,
|
||||
baseline=baselineband,
|
||||
baseline_envelope=baseline_envelope,
|
||||
baseline_peaks=baseline_peaks,
|
||||
search=search,
|
||||
baseline_peaks=baseline_peak_indices,
|
||||
search=searchband,
|
||||
search_envelope=search_envelope,
|
||||
search_peaks=search_peaks,
|
||||
frequency_time=baseline_freq_time,
|
||||
frequency=baseline_freq,
|
||||
frequency_filtered=inst_freq_filtered,
|
||||
frequency_peaks=inst_freq_peaks,
|
||||
search_peaks=search_peak_indices,
|
||||
frequency_time=baseline_frequency_time,
|
||||
frequency=baseline_frequency,
|
||||
frequency_filtered=baseline_frequency_filtered,
|
||||
frequency_peaks=frequency_peak_indices,
|
||||
)
|
||||
|
||||
logger.debug("Buffer initialized!")
|
||||
|
||||
logger.debug(
|
||||
f"Processed all electrodes for fish {track_id} for this \
|
||||
window, sorting chirps ..."
|
||||
f"Processed all electrodes for fish {track_id} for this"
|
||||
"window, sorting chirps ..."
|
||||
)
|
||||
|
||||
# check if there are chirps detected in multiple electrodes and
|
||||
# continue the loop if not
|
||||
|
||||
if len(multielectrode_chirps) == 0:
|
||||
continue
|
||||
|
||||
# validate multielectrode chirps, i.e. check if they are
|
||||
# detected in at least 'config.min_electrodes' electrodes
|
||||
|
||||
multielectrode_chirps_validated = group_timestamps(
|
||||
multielectrode_chirps,
|
||||
config.minimum_electrodes,
|
||||
config.chirp_window_threshold
|
||||
sublists=multielectrode_chirps,
|
||||
at_least_in=config.minimum_electrodes,
|
||||
difference_threshold=config.chirp_window_threshold,
|
||||
)
|
||||
|
||||
# add validated chirps to the list that tracks chirps across there
|
||||
# rolling time windows
|
||||
|
||||
multiwindow_chirps.append(multielectrode_chirps_validated)
|
||||
multiwindow_ids.append(track_id)
|
||||
|
||||
@ -763,6 +816,7 @@ def main(datapath: str, plot: str) -> None:
|
||||
)
|
||||
# if chirps are detected and the plot flag is set, plot the
|
||||
# chirps, otheswise try to delete the buffer if it exists
|
||||
|
||||
if len(multielectrode_chirps_validated) > 0:
|
||||
try:
|
||||
buffer.plot_buffer(multielectrode_chirps_validated, plot)
|
||||
@ -776,27 +830,38 @@ def main(datapath: str, plot: str) -> None:
|
||||
|
||||
# flatten list of lists containing chirps and create
|
||||
# an array of fish ids that correspond to the chirps
|
||||
|
||||
multiwindow_chirps_flat = []
|
||||
multiwindow_ids_flat = []
|
||||
for tr in np.unique(multiwindow_ids):
|
||||
tr_index = np.asarray(multiwindow_ids) == tr
|
||||
ts = flatten(list(compress(multiwindow_chirps, tr_index)))
|
||||
multiwindow_chirps_flat.extend(ts)
|
||||
multiwindow_ids_flat.extend(list(np.ones_like(ts) * tr))
|
||||
for track_id in np.unique(multiwindow_ids):
|
||||
|
||||
# get chirps for this fish and flatten the list
|
||||
current_track_bool = np.asarray(multiwindow_ids) == track_id
|
||||
current_track_chirps = flatten(
|
||||
list(compress(multiwindow_chirps, current_track_bool))
|
||||
)
|
||||
|
||||
# add flattened chirps to the list
|
||||
multiwindow_chirps_flat.extend(current_track_chirps)
|
||||
multiwindow_ids_flat.extend(
|
||||
list(np.ones_like(current_track_chirps) * track_id)
|
||||
)
|
||||
|
||||
# purge duplicates, i.e. chirps that are very close to each other
|
||||
# duplites arise due to overlapping windows
|
||||
|
||||
purged_chirps = []
|
||||
purged_ids = []
|
||||
for tr in np.unique(multiwindow_ids_flat):
|
||||
for track_id in np.unique(multiwindow_ids_flat):
|
||||
tr_chirps = np.asarray(multiwindow_chirps_flat)[
|
||||
np.asarray(multiwindow_ids_flat) == tr]
|
||||
np.asarray(multiwindow_ids_flat) == track_id
|
||||
]
|
||||
if len(tr_chirps) > 0:
|
||||
tr_chirps_purged = purge_duplicates(
|
||||
tr_chirps, config.chirp_window_threshold
|
||||
)
|
||||
purged_chirps.extend(list(tr_chirps_purged))
|
||||
purged_ids.extend(list(np.ones_like(tr_chirps_purged) * tr))
|
||||
purged_ids.extend(list(np.ones_like(tr_chirps_purged) * track_id))
|
||||
|
||||
# sort chirps by time
|
||||
purged_chirps = np.asarray(purged_chirps)
|
||||
|
@ -1,3 +1,4 @@
|
||||
# directory setup
|
||||
dataroot: "../data/"
|
||||
outputdir: "../output/"
|
||||
|
||||
@ -10,30 +11,26 @@ edge: 0.25
|
||||
number_electrodes: 3
|
||||
minimum_electrodes: 2
|
||||
|
||||
# Search window bandwidth
|
||||
# Search window bandwidth and minimal baseline bandwidth
|
||||
minimal_bandwidth: 10
|
||||
|
||||
# Cutoff frequency for envelope estimation by lowpass filter
|
||||
envelope_cutoff: 25
|
||||
# Instantaneous frequency smoothing usint a gaussian kernel of this width
|
||||
baseline_frequency_smoothing: 5
|
||||
|
||||
# Cutoff frequency for envelope highpass filter
|
||||
envelope_highpass_cutoff: 3
|
||||
# Baseline processing parameters
|
||||
baseline_envelope_cutoff: 25
|
||||
baseline_envelope_bandpass_lowf: 4
|
||||
baseline_envelope_bandpass_highf: 100
|
||||
baseline_envelope_envelope_cutoff: 4
|
||||
|
||||
# Cutoff frequency for envelope of envelope
|
||||
envelope_envelope_cutoff: 5
|
||||
# search envelope processing parameters
|
||||
search_envelope_cutoff: 5
|
||||
|
||||
# Instantaneous frequency bandpass filter cutoff frequencies
|
||||
instantaneous_lowf: 15
|
||||
instantaneous_highf: 8000
|
||||
|
||||
# Baseline envelope peak detection parameters
|
||||
# baseline_prominence_percentile: 90
|
||||
|
||||
# Search envelope peak detection parameters
|
||||
# search_prominence_percentile: 90
|
||||
|
||||
# Instantaneous frequency peak detection parameters
|
||||
# instantaneous_prominence_percentile: 90
|
||||
baseline_frequency_highpass_cutoff: 0.000005
|
||||
baseline_frequency_envelope_cutoff: 0.000005
|
||||
|
||||
# peak detecion parameters
|
||||
prominence: 0.005
|
||||
|
||||
# search freq parameter
|
||||
|
@ -1,5 +1,59 @@
|
||||
import numpy as np
|
||||
from typing import List, Any
|
||||
from scipy.ndimage import gaussian_filter1d
|
||||
|
||||
|
||||
def instantaneous_frequency(
|
||||
signal: np.ndarray,
|
||||
samplerate: int,
|
||||
smoothing_window: int,
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Compute the instantaneous frequency of a signal that is approximately
|
||||
sinusoidal and symmetric around 0.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
signal : np.ndarray
|
||||
Signal to compute the instantaneous frequency from.
|
||||
samplerate : int
|
||||
Samplerate of the signal.
|
||||
smoothing_window : int
|
||||
Window size for the gaussian filter.
|
||||
|
||||
Returns
|
||||
-------
|
||||
tuple[np.ndarray, np.ndarray]
|
||||
|
||||
"""
|
||||
# calculate instantaneous frequency with zero crossings
|
||||
roll_signal = np.roll(signal, shift=1)
|
||||
time_signal = np.arange(len(signal)) / samplerate
|
||||
period_index = np.arange(len(signal))[(roll_signal < 0) & (signal >= 0)][
|
||||
1:-1
|
||||
]
|
||||
|
||||
upper_bound = np.abs(signal[period_index])
|
||||
lower_bound = np.abs(signal[period_index - 1])
|
||||
upper_time = np.abs(time_signal[period_index])
|
||||
lower_time = np.abs(time_signal[period_index - 1])
|
||||
|
||||
# create ratio
|
||||
lower_ratio = lower_bound / (lower_bound + upper_bound)
|
||||
|
||||
# appy to time delta
|
||||
time_delta = upper_time - lower_time
|
||||
true_zero = lower_time + lower_ratio * time_delta
|
||||
|
||||
# create new time array
|
||||
instantaneous_frequency_time = true_zero[:-1] + 0.5 * np.diff(true_zero)
|
||||
|
||||
# compute frequency
|
||||
instantaneous_frequency = gaussian_filter1d(
|
||||
1 / np.diff(true_zero), smoothing_window
|
||||
)
|
||||
|
||||
return instantaneous_frequency_time, instantaneous_frequency
|
||||
|
||||
|
||||
def purge_duplicates(
|
||||
@ -64,7 +118,7 @@ def purge_duplicates(
|
||||
|
||||
|
||||
def group_timestamps(
|
||||
sublists: List[List[float]], n: int, threshold: float
|
||||
sublists: List[List[float]], at_least_in: int, difference_threshold: float
|
||||
) -> List[float]:
|
||||
"""
|
||||
Groups timestamps that are less than `threshold` milliseconds apart from
|
||||
@ -100,7 +154,7 @@ def group_timestamps(
|
||||
|
||||
# Group timestamps that are less than threshold milliseconds apart
|
||||
for i in range(1, len(timestamps)):
|
||||
if timestamps[i] - timestamps[i - 1] < threshold:
|
||||
if timestamps[i] - timestamps[i - 1] < difference_threshold:
|
||||
current_group.append(timestamps[i])
|
||||
else:
|
||||
groups.append(current_group)
|
||||
@ -111,7 +165,7 @@ def group_timestamps(
|
||||
# Retain only groups that contain at least n timestamps
|
||||
final_groups = []
|
||||
for group in groups:
|
||||
if len(group) >= n:
|
||||
if len(group) >= at_least_in:
|
||||
final_groups.append(group)
|
||||
|
||||
# Calculate the mean of each group
|
||||
|
@ -3,8 +3,8 @@ import numpy as np
|
||||
|
||||
|
||||
def bandpass_filter(
|
||||
data: np.ndarray,
|
||||
rate: float,
|
||||
signal: np.ndarray,
|
||||
samplerate: float,
|
||||
lowf: float,
|
||||
highf: float,
|
||||
) -> np.ndarray:
|
||||
@ -12,7 +12,7 @@ def bandpass_filter(
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : np.ndarray
|
||||
signal : np.ndarray
|
||||
The data to be filtered
|
||||
rate : float
|
||||
The sampling rate
|
||||
@ -26,21 +26,22 @@ def bandpass_filter(
|
||||
np.ndarray
|
||||
The filtered data
|
||||
"""
|
||||
sos = butter(2, (lowf, highf), "bandpass", fs=rate, output="sos")
|
||||
fdata = sosfiltfilt(sos, data)
|
||||
return fdata
|
||||
sos = butter(2, (lowf, highf), "bandpass", fs=samplerate, output="sos")
|
||||
filtered_signal = sosfiltfilt(sos, signal)
|
||||
|
||||
return filtered_signal
|
||||
|
||||
|
||||
def highpass_filter(
|
||||
data: np.ndarray,
|
||||
rate: float,
|
||||
signal: np.ndarray,
|
||||
samplerate: float,
|
||||
cutoff: float,
|
||||
) -> np.ndarray:
|
||||
"""Highpass filter a signal.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : np.ndarray
|
||||
signal : np.ndarray
|
||||
The data to be filtered
|
||||
rate : float
|
||||
The sampling rate
|
||||
@ -52,14 +53,15 @@ def highpass_filter(
|
||||
np.ndarray
|
||||
The filtered data
|
||||
"""
|
||||
sos = butter(2, cutoff, "highpass", fs=rate, output="sos")
|
||||
fdata = sosfiltfilt(sos, data)
|
||||
return fdata
|
||||
sos = butter(2, cutoff, "highpass", fs=samplerate, output="sos")
|
||||
filtered_signal = sosfiltfilt(sos, signal)
|
||||
|
||||
return filtered_signal
|
||||
|
||||
|
||||
def lowpass_filter(
|
||||
data: np.ndarray,
|
||||
rate: float,
|
||||
signal: np.ndarray,
|
||||
samplerate: float,
|
||||
cutoff: float
|
||||
) -> np.ndarray:
|
||||
"""Lowpass filter a signal.
|
||||
@ -78,21 +80,25 @@ def lowpass_filter(
|
||||
np.ndarray
|
||||
The filtered data
|
||||
"""
|
||||
sos = butter(2, cutoff, "lowpass", fs=rate, output="sos")
|
||||
fdata = sosfiltfilt(sos, data)
|
||||
return fdata
|
||||
sos = butter(2, cutoff, "lowpass", fs=samplerate, output="sos")
|
||||
filtered_signal = sosfiltfilt(sos, signal)
|
||||
|
||||
return filtered_signal
|
||||
|
||||
|
||||
def envelope(data: np.ndarray, rate: float, freq: float) -> np.ndarray:
|
||||
def envelope(signal: np.ndarray,
|
||||
samplerate: float,
|
||||
cutoff_frequency: float
|
||||
) -> np.ndarray:
|
||||
"""Calculate the envelope of a signal using a lowpass filter.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : np.ndarray
|
||||
signal : np.ndarray
|
||||
The signal to calculate the envelope of
|
||||
rate : float
|
||||
samplingrate : float
|
||||
The sampling rate of the signal
|
||||
freq : float
|
||||
cutoff_frequency : float
|
||||
The cutoff frequency of the lowpass filter
|
||||
|
||||
Returns
|
||||
@ -100,6 +106,7 @@ def envelope(data: np.ndarray, rate: float, freq: float) -> np.ndarray:
|
||||
np.ndarray
|
||||
The envelope of the signal
|
||||
"""
|
||||
sos = butter(2, freq, "lowpass", fs=rate, output="sos")
|
||||
envelope = np.sqrt(2) * sosfiltfilt(sos, np.abs(data))
|
||||
sos = butter(2, cutoff_frequency, "lowpass", fs=samplerate, output="sos")
|
||||
envelope = np.sqrt(2) * sosfiltfilt(sos, np.abs(signal))
|
||||
|
||||
return envelope
|
||||
|
Loading…
Reference in New Issue
Block a user