new variable names

This commit is contained in:
weygoldt 2023-01-19 18:21:59 +01:00
parent f6326de0b7
commit 9985686d53
2 changed files with 355 additions and 236 deletions

View File

@ -1,8 +1,8 @@
from itertools import compress
from dataclasses import dataclass
import numpy as np
from IPython import embed
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
@ -23,6 +23,11 @@ ps = PlotStyle()
@dataclass
class PlotBuffer:
"""
Buffer to save data that is created in the main detection loop
and plot it outside the detecion loop.
"""
config: ConfLoader
t0: float
dt: float
@ -73,14 +78,15 @@ class PlotBuffer:
figsize=(20 / 2.54, 12 / 2.54),
constrained_layout=True,
sharex=True,
sharey='row',
sharey="row",
)
# plot spectrogram
plot_spectrogram(axs[0], data_oi, self.data.raw_rate, self.t0)
for chirp in chirps:
axs[0].scatter(chirp, np.median(self.frequency), c=ps.red)
axs[0].scatter(chirp, np.median(self.frequency),
c=ps.black, marker="x")
# plot waveform of filtered signal
axs[1].plot(self.time, self.baseline, c=ps.green)
@ -114,8 +120,9 @@ class PlotBuffer:
self.frequency_filtered[self.frequency_peaks],
c=ps.red,
)
axs[0].set_ylim(np.max(self.frequency)-200,
top=np.max(self.frequency)+200)
axs[0].set_ylim(
np.max(self.frequency) - 200, top=np.max(self.frequency) + 200
)
axs[6].set_xlabel("Time [s]")
axs[0].set_title("Spectrogram")
axs[1].set_title("Fitered baseline")
@ -123,20 +130,63 @@ class PlotBuffer:
axs[3].set_title("Fitered baseline instanenous frequency")
axs[4].set_title("Filtered envelope of baseline envelope")
axs[5].set_title("Search envelope")
axs[6].set_title(
"Filtered absolute instantaneous frequency")
axs[6].set_title("Filtered absolute instantaneous frequency")
if plot == 'show':
if plot == "show":
plt.show()
elif plot == 'save':
elif plot == "save":
make_outputdir(self.config.outputdir)
out = make_outputdir(self.config.outputdir +
self.data.datapath.split('/')[-2] + '/')
out = make_outputdir(
self.config.outputdir + self.data.datapath.split("/")[-2] + "/"
)
plt.savefig(f"{out}{self.track_id}_{self.t0}.pdf")
plt.close()
def plot_spectrogram(
axis, signal: np.ndarray, samplerate: float, t0: float
) -> None:
"""
Plot a spectrogram of a signal.
Parameters
----------
axis : matplotlib axis
Axis to plot the spectrogram on.
signal : np.ndarray
Signal to plot the spectrogram from.
samplerate : float
Samplerate of the signal.
t0 : float
Start time of the signal.
"""
logger.debug("Plotting spectrogram")
# compute spectrogram
spec_power, spec_freqs, spec_times = spectrogram(
signal,
ratetime=samplerate,
freq_resolution=20,
overlap_frac=0.5,
)
# axis.pcolormesh(
# spec_times + t0,
# spec_freqs,
# decibel(spec_power),
# )
axis.imshow(
decibel(spec_power),
extent=[spec_times[0] + t0, spec_times[-1] +
t0, spec_freqs[0], spec_freqs[-1]],
aspect="auto",
origin="lower",
interpolation="gaussian",
)
def instantaneos_frequency(
signal: np.ndarray, samplerate: int
) -> tuple[np.ndarray, np.ndarray]:
@ -158,8 +208,9 @@ def instantaneos_frequency(
# calculate instantaneos frequency with zero crossings
roll_signal = np.roll(signal, shift=1)
time_signal = np.arange(len(signal)) / samplerate
period_index = np.arange(len(signal))[(
roll_signal < 0) & (signal >= 0)][1:-1]
period_index = np.arange(len(signal))[(roll_signal < 0) & (signal >= 0)][
1:-1
]
upper_bound = np.abs(signal[period_index])
lower_bound = np.abs(signal[period_index - 1])
@ -182,43 +233,12 @@ def instantaneos_frequency(
return inst_freq_time, inst_freq
def plot_spectrogram(axis, signal: np.ndarray, samplerate: float, t0: float) -> None:
"""
Plot a spectrogram of a signal.
Parameters
----------
axis : matplotlib axis
Axis to plot the spectrogram on.
signal : np.ndarray
Signal to plot the spectrogram from.
samplerate : float
Samplerate of the signal.
t0 : float
Start time of the signal.
"""
logger.debug("Plotting spectrogram")
# compute spectrogram
spec_power, spec_freqs, spec_times = spectrogram(
signal,
ratetime=samplerate,
freq_resolution=50,
overlap_frac=0.2,
)
axis.pcolormesh(
spec_times + t0,
spec_freqs,
decibel(spec_power),
)
axis.set_ylim(200, 1200)
def double_bandpass(
data: DataLoader, samplerate: int, freqs: np.ndarray, search_freq: float
data: DataLoader,
samplerate: int,
freqs: np.ndarray,
search_freq: float,
config: ConfLoader
) -> tuple[np.ndarray, np.ndarray]:
"""
Apply a bandpass filter to the baseline of a signal and a second bandpass
@ -241,7 +261,7 @@ def double_bandpass(
"""
# compute boundaries to filter baseline
q25, q75 = np.percentile(freqs, [25, 75])
q25, q50, q75 = np.percentile(freqs, [25, 50, 75])
# check if percentile delta is too small
if q75 - q25 < 5:
@ -253,13 +273,17 @@ def double_bandpass(
# filter search area
filtered_search_freq = bandpass_filter(
data, samplerate, lowf=q25 + search_freq, highf=q75 + search_freq
data, samplerate,
lowf=search_freq + q50 - config.search_bandwidth / 2,
highf=search_freq + q50 + config.search_bandwidth / 2
)
return (filtered_baseline, filtered_search_freq)
return filtered_baseline, filtered_search_freq
def freqmedian_allfish(data: LoadData, t0: float, dt: float) -> tuple[float, list[int]]:
def freqmedian_allfish(
data: LoadData, t0: float, dt: float
) -> tuple[float, list[int]]:
"""
Calculate the median frequency of all fish in a given time window.
@ -283,8 +307,9 @@ def freqmedian_allfish(data: LoadData, t0: float, dt: float) -> tuple[float, lis
for _, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
window_idx = np.arange(len(data.idx))[
(data.ident == track_id) & (data.time[data.idx] >= t0) & (
data.time[data.idx] <= (t0 + dt))
(data.ident == track_id)
& (data.time[data.idx] >= t0)
& (data.time[data.idx] <= (t0 + dt))
]
if len(data.freq[window_idx]) > 0:
@ -298,6 +323,112 @@ def freqmedian_allfish(data: LoadData, t0: float, dt: float) -> tuple[float, lis
return median_freq, track_ids
def find_search_freq(
freq_temp: np.ndarray,
median_ids: np.ndarray,
median_freq: np.ndarray,
config: ConfLoader,
data: LoadData,
) -> float:
"""
Find the search frequency for each fish by checking which fish EODs are
above the current EOD and finding a gap in them.
Parameters
----------
freq_temp : np.ndarray
Current EOD frequency array / the current fish of interest.
median_ids : np.ndarray
Array of track IDs of the medians of all other fish in the current window.
median_freq : np.ndarray
Array of median frequencies of all other fish in the current window.
config : ConfLoader
Configuration file.
data : LoadData
Data to find the search frequency from.
Returns
-------
float
"""
# frequency where second filter filters
search_window = np.arange(
np.median(freq_temp) + config.search_df_lower,
np.median(freq_temp) + config.search_df_upper,
config.search_res,
)
# search window in boolean
search_window_bool = np.ones(len(search_window), dtype=bool)
# get tracks that fall into search window
check_track_ids = median_ids[
(median_freq > search_window[0]) & (median_freq < search_window[-1])
]
# iterate through theses tracks
if check_track_ids.size != 0:
for j, check_track_id in enumerate(check_track_ids):
q1, q2 = np.percentile(
data.freq[data.ident == check_track_id],
config.search_freq_percentiles,
)
search_window_bool[
(search_window > q1) & (search_window < q2)
] = False
# find gaps in search window
search_window_indices = np.arange(len(search_window))
# get search window gaps
search_window_gaps = np.diff(search_window_bool, append=np.nan)
nonzeros = search_window_gaps[np.nonzero(search_window_gaps)[0]]
nonzeros = nonzeros[~np.isnan(nonzeros)]
# if the first value is -1, the array starst with true, so a gap
if nonzeros[0] == -1:
stops = search_window_indices[search_window_gaps == -1]
starts = np.append(
0, search_window_indices[search_window_gaps == 1]
)
# if the last value is -1, the array ends with true, so a gap
if nonzeros[-1] == 1:
stops = np.append(
search_window_indices[search_window_gaps == -1],
len(search_window) - 1,
)
# else it starts with false, so no gap
if nonzeros[0] == 1:
stops = search_window_indices[search_window_gaps == -1]
starts = search_window_indices[search_window_gaps == 1]
# if the last value is -1, the array ends with true, so a gap
if nonzeros[-1] == 1:
stops = np.append(
search_window_indices[search_window_gaps == -1],
len(search_window),
)
# get the frequency ranges of the gaps
search_windows = [search_window[x:y] for x, y in zip(starts, stops)]
search_windows_lens = [len(x) for x in search_windows]
longest_search_window = search_windows[np.argmax(search_windows_lens)]
search_freq = (
longest_search_window[-1] - longest_search_window[0]) / 2
else:
search_freq = config.default_search_freq
return search_freq
def main(datapath: str, plot: str) -> None:
assert plot in ["save", "show", "false"]
@ -328,24 +459,24 @@ def main(datapath: str, plot: str) -> None:
# make time array for raw data
raw_time = np.arange(data.raw.shape[0]) / data.raw_rate
# # good chirp times for data: 2022-06-02-10_00
# t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
# dt = 60 * data.raw_rate
# good chirp times for data: 2022-06-02-10_00
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
dt = 60 * data.raw_rate
t0 = 0
dt = data.raw.shape[0]
# t0 = 0
# dt = data.raw.shape[0]
# generate starting points of rolling window
window_starts = np.arange(
t0,
t0 + dt,
window_duration - (window_overlap + 2 * window_edge),
dtype=int
dtype=int,
)
# ititialize lists to store data
chirps = []
fish_ids = []
multiwindow_chirps = []
multiwindow_ids = []
for st, start_index in enumerate(window_starts):
@ -362,14 +493,17 @@ def main(datapath: str, plot: str) -> None:
median_freq, median_ids = freqmedian_allfish(data, t0, dt)
# iterate through all fish
for tr, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
for tr, track_id in enumerate(
np.unique(data.ident[~np.isnan(data.ident)])
):
logger.debug(f"Processing track {tr} of {len(data.ids)}")
# get index of track data in this time window
window_idx = np.arange(len(data.idx))[
(data.ident == track_id) & (data.time[data.idx] >= t0) & (
data.time[data.idx] <= (t0 + dt))
(data.ident == track_id)
& (data.time[data.idx] >= t0)
& (data.time[data.idx] <= (t0 + dt))
]
# get tracked frequencies and their times
@ -384,99 +518,45 @@ def main(datapath: str, plot: str) -> None:
# check if tracked data available in this window
if len(freq_temp) < expected_duration * 0.5:
logger.warning(
f"Track {track_id} has no data in window {st}, skipping.")
f"Track {track_id} has no data in window {st}, skipping."
)
continue
# check if there are powers available in this window
nanchecker = np.unique(np.isnan(powers_temp))
if (len(nanchecker) == 1) and nanchecker[0] == True:
if (len(nanchecker) == 1) and nanchecker[0]:
logger.warning(
f"No powers available for track {track_id} window {st}, skipping.")
f"No powers available for track {track_id} window {st}, \
skipping."
)
continue
best_electrodes = np.argsort(np.nanmean(
powers_temp, axis=0))[-config.number_electrodes:]
# frequency where second filter filters
search_window = np.arange(
np.median(freq_temp)+config.search_df_lower, np.median(
freq_temp)+config.search_df_upper, config.search_res)
# search window in boolean
search_window_bool = np.ones(len(search_window), dtype=bool)
# get tracks that fall into search window
check_track_ids = median_ids[(median_freq > search_window[0]) & (
median_freq < search_window[-1])]
# iterate through theses tracks
if check_track_ids.size != 0:
for j, check_track_id in enumerate(check_track_ids):
q1, q2 = np.percentile(
data.freq[data.ident == check_track_id],
config.search_freq_percentiles
)
search_window_bool[(search_window > q1) & (
search_window < q2)] = False
# find gaps in search window
search_window_indices = np.arange(len(search_window))
# get search window gaps
search_window_gaps = np.diff(search_window_bool, append=np.nan)
nonzeros = search_window_gaps[np.nonzero(
search_window_gaps)[0]]
nonzeros = nonzeros[~np.isnan(nonzeros)]
# if the first value is -1, the array starst with true, so a gap
if nonzeros[0] == -1:
stops = search_window_indices[search_window_gaps == -1]
starts = np.append(
0, search_window_indices[search_window_gaps == 1])
# if the last value is -1, the array ends with true, so a gap
if nonzeros[-1] == 1:
stops = np.append(
search_window_indices[search_window_gaps == -1],
len(search_window) - 1
)
# else it starts with false, so no gap
if nonzeros[0] == 1:
stops = search_window_indices[search_window_gaps == -1]
starts = search_window_indices[search_window_gaps == 1]
# if the last value is -1, the array ends with true, so a gap
if nonzeros[-1] == 1:
stops = np.append(
search_window_indices[search_window_gaps == -1],
len(search_window)
)
# get the frequency ranges of the gaps
search_windows = [search_window[x:y]
for x, y in zip(starts, stops)]
search_windows_lens = [len(x) for x in search_windows]
longest_search_window = search_windows[np.argmax(
search_windows_lens)]
search_freq = (
longest_search_window[1] - longest_search_window[0]) / 2
# find the strongest electrodes for the current fish in the current
# window
best_electrodes = np.argsort(np.nanmean(powers_temp, axis=0))[
-config.number_electrodes:
]
else:
search_freq = config.default_search_freq
# find a frequency above the baseline of the current fish in which
# no other fish is active to search for chirps there
search_freq = find_search_freq(
config=config,
freq_temp=freq_temp,
median_ids=median_ids,
data=data,
median_freq=median_freq,
)
# ----------- chrips on the two best electrodes-----------
chirps_electrodes = []
# add all chirps that are detected on mulitple electrodes for one
# fish fish in one window to this list
multielectrode_chirps = []
# iterate through electrodes
for el, electrode in enumerate(best_electrodes):
logger.debug(
f"Processing electrode {el} of {len(best_electrodes)}")
f"Processing electrode {el} of {len(best_electrodes)}"
)
# load region of interest of raw data file
data_oi = data.raw[start_index:stop_index, :]
@ -487,15 +567,8 @@ def main(datapath: str, plot: str) -> None:
data_oi[:, electrode],
data.raw_rate,
freq_temp,
search_freq
)
# compute instantaneous frequency on broad signal
broad_baseline = bandpass_filter(
data_oi[:, electrode],
data.raw_rate,
lowf=np.mean(freq_temp)-5,
highf=np.mean(freq_temp)+100
search_freq,
config=config,
)
# compute instantaneous frequency on narrow signal
@ -505,67 +578,73 @@ def main(datapath: str, plot: str) -> None:
# compute envelopes
baseline_envelope_unfiltered = envelope(
baseline, data.raw_rate, config.envelope_cutoff)
baseline, data.raw_rate, config.envelope_cutoff
)
search_envelope = envelope(
search, data.raw_rate, config.envelope_cutoff)
search, data.raw_rate, config.envelope_cutoff
)
# highpass filter envelopes
baseline_envelope = highpass_filter(
baseline_envelope_unfiltered,
data.raw_rate,
config.envelope_highpass_cutoff
config.envelope_highpass_cutoff,
)
# envelopes of filtered envelope of filtered baseline
baseline_envelope = envelope(
np.abs(baseline_envelope),
data.raw_rate,
config.envelope_envelope_cutoff
config.envelope_envelope_cutoff,
)
# bandpass filter the instantaneous
# bandpass filter the instantaneous frequency to put it to 0
inst_freq_filtered = bandpass_filter(
baseline_freq,
data.raw_rate,
lowf=config.instantaneous_lowf,
highf=config.instantaneous_highf
highf=config.instantaneous_highf,
)
# CUT OFF OVERLAP ---------------------------------------------
# cut off first and last 0.5 * overlap at start and end
# overwrite raw time to valid region, i.e. cut off snippet at
# start and end of each window to remove filter effects
valid = np.arange(
int(window_edge), len(baseline_envelope) -
int(window_edge)
int(window_edge), len(baseline_envelope) - int(window_edge)
)
baseline_envelope_unfiltered = baseline_envelope_unfiltered[valid]
baseline_envelope_unfiltered = baseline_envelope_unfiltered[
valid
]
baseline_envelope = baseline_envelope[valid]
search_envelope = search_envelope[valid]
# get inst freq valid snippet
valid_t0 = int(window_edge) / data.raw_rate
valid_t1 = baseline_freq_time[-1] - \
(int(window_edge) / data.raw_rate)
valid_t1 = baseline_freq_time[-1] - (
int(window_edge) / data.raw_rate
)
inst_freq_filtered = inst_freq_filtered[
(baseline_freq_time >= valid_t0) & (
baseline_freq_time <= valid_t1)
(baseline_freq_time >= valid_t0)
& (baseline_freq_time <= valid_t1)
]
baseline_freq = baseline_freq[
(baseline_freq_time >= valid_t0) & (
baseline_freq_time <= valid_t1)
(baseline_freq_time >= valid_t0)
& (baseline_freq_time <= valid_t1)
]
baseline_freq_time = baseline_freq_time[
(baseline_freq_time >= valid_t0) & (
baseline_freq_time <= valid_t1)
] + t0
baseline_freq_time = (
baseline_freq_time[
(baseline_freq_time >= valid_t0)
& (baseline_freq_time <= valid_t1)
]
+ t0
)
# overwrite raw time to valid region
time_oi = time_oi[valid]
baseline = baseline[valid]
broad_baseline = broad_baseline[valid]
search = search[valid]
# NORMALIZE ---------------------------------------------------
@ -576,49 +655,59 @@ def main(datapath: str, plot: str) -> None:
# PEAK DETECTION ----------------------------------------------
prominence = config.prominence
# detect peaks baseline_enelope
prominence = np.percentile(
baseline_envelope, config.baseline_prominence_percentile)
baseline_peaks, _ = find_peaks(
baseline_envelope, prominence=prominence)
baseline_envelope, prominence=prominence
)
# detect peaks search_envelope
prominence = np.percentile(
search_envelope, config.search_prominence_percentile)
search_peaks, _ = find_peaks(
search_envelope, prominence=prominence)
# detect peaks inst_freq_filtered
prominence = np.percentile(
inst_freq_filtered,
config.instantaneous_prominence_percentile
search_envelope, prominence=prominence
)
# detect peaks inst_freq_filtered
inst_freq_peaks, _ = find_peaks(
inst_freq_filtered,
prominence=prominence
inst_freq_filtered, prominence=prominence
)
# DETECT CHIRPS IN SEARCH WINDOW -------------------------------
# DETECT CHIRPS IN SEARCH WINDOW ------------------------------
# get the peak timestamps from the peak indices
baseline_ts = time_oi[baseline_peaks]
search_ts = time_oi[search_peaks]
freq_ts = baseline_freq_time[inst_freq_peaks]
# check if one list is empty
if len(baseline_ts) == 0 or len(search_ts) == 0 or len(freq_ts) == 0:
# check if one list is empty and if so, skip to the next
# electrode because a chirp cannot be detected if one is empty
if (
len(baseline_ts) == 0
or len(search_ts) == 0
or len(freq_ts) == 0
):
continue
current_chirps = group_timestamps(
[list(baseline_ts), list(search_ts), list(freq_ts)], 3, config.chirp_window_threshold)
# for checking if there are chirps on multiple electrodes
if len(current_chirps) == 0:
# group peak across feature arrays but only if they
# occur in all 3 feature arrays
singleelectrode_chirps = group_timestamps(
[list(baseline_ts), list(search_ts), list(freq_ts)],
3,
config.chirp_window_threshold,
)
# check it there are chirps detected after grouping, continue
# with the loop if not
if len(singleelectrode_chirps) == 0:
continue
chirps_electrodes.append(current_chirps)
# append chirps from this electrode to the multilectrode list
multielectrode_chirps.append(singleelectrode_chirps)
if (el == config.number_electrodes - 1) & \
(len(current_chirps) > 0) & \
(plot in ["show", "save"]):
# only initialize the plotting buffer if chirps are detected
if (
(el == config.number_electrodes - 1)
& (len(singleelectrode_chirps) > 0)
& (plot in ["show", "save"])
):
logger.debug("Detected chirp, ititialize buffer ...")
@ -646,21 +735,37 @@ def main(datapath: str, plot: str) -> None:
logger.debug("Buffer initialized!")
logger.debug(
f"Processed all electrodes for fish {track_id} for this window, sorting chirps ...")
f"Processed all electrodes for fish {track_id} for this \
window, sorting chirps ..."
)
if len(chirps_electrodes) == 0:
# check if there are chirps detected in multiple electrodes and
# continue the loop if not
if len(multielectrode_chirps) == 0:
continue
the_real_chirps = group_timestamps(chirps_electrodes, 2, 0.05)
# validate multielectrode chirps, i.e. check if they are
# detected in at least 'config.min_electrodes' electrodes
multielectrode_chirps_validated = group_timestamps(
multielectrode_chirps,
config.minimum_electrodes,
config.chirp_window_threshold
)
chirps.append(the_real_chirps)
fish_ids.append(track_id)
# add validated chirps to the list that tracks chirps across there
# rolling time windows
multiwindow_chirps.append(multielectrode_chirps_validated)
multiwindow_ids.append(track_id)
logger.debug('Found %d chirps, starting plotting ... ' %
len(the_real_chirps))
if len(the_real_chirps) > 0:
logger.debug(
"Found %d chirps, starting plotting ... "
% len(multielectrode_chirps_validated)
)
# if chirps are detected and the plot flag is set, plot the
# chirps, otheswise try to delete the buffer if it exists
if len(multielectrode_chirps_validated) > 0:
try:
buffer.plot_buffer(the_real_chirps, plot)
buffer.plot_buffer(multielectrode_chirps_validated, plot)
except NameError:
pass
else:
@ -669,29 +774,42 @@ def main(datapath: str, plot: str) -> None:
except NameError:
pass
chirps_new = []
chirps_ids = []
for tr in np.unique(fish_ids):
tr_index = np.asarray(fish_ids) == tr
ts = flatten(list(compress(chirps, tr_index)))
chirps_new.extend(ts)
chirps_ids.extend(list(np.ones_like(ts)*tr))
# purge duplicates
# flatten list of lists containing chirps and create
# an array of fish ids that correspond to the chirps
multiwindow_chirps_flat = []
multiwindow_ids_flat = []
for tr in np.unique(multiwindow_ids):
tr_index = np.asarray(multiwindow_ids) == tr
ts = flatten(list(compress(multiwindow_chirps, tr_index)))
multiwindow_chirps_flat.extend(ts)
multiwindow_ids_flat.extend(list(np.ones_like(ts) * tr))
# purge duplicates, i.e. chirps that are very close to each other
# duplites arise due to overlapping windows
purged_chirps = []
purged_chirps_ids = []
for tr in np.unique(fish_ids):
tr_chirps = np.asarray(chirps_new)[np.asarray(chirps_ids) == tr]
purged_ids = []
for tr in np.unique(multiwindow_ids_flat):
tr_chirps = np.asarray(multiwindow_chirps_flat)[
np.asarray(multiwindow_ids_flat) == tr]
if len(tr_chirps) > 0:
tr_chirps_purged = purge_duplicates(
tr_chirps, config.chirp_window_threshold)
tr_chirps, config.chirp_window_threshold
)
purged_chirps.extend(list(tr_chirps_purged))
purged_chirps_ids.extend(list(np.ones_like(tr_chirps_purged)*tr))
purged_ids.extend(list(np.ones_like(tr_chirps_purged) * tr))
# sort chirps by time
purged_chirps = np.asarray(purged_chirps)
purged_ids = np.asarray(purged_ids)
purged_ids = purged_ids[np.argsort(purged_chirps)]
purged_chirps = purged_chirps[np.argsort(purged_chirps)]
np.save(datapath + 'chirps.npy', purged_chirps)
np.save(datapath + 'chirps_ids.npy', purged_chirps_ids)
# save them into the data directory
np.save(datapath + "chirps.npy", purged_chirps)
np.save(datapath + "chirp_ids.npy", purged_ids)
if __name__ == "__main__":
# datapath = "/home/weygoldt/Data/uni/chirpdetection/GP2023_chirp_detection/data/mount_data/2020-05-13-10_00/"
datapath = "../data/2022-06-02-10_00/"
main(datapath, plot="save")
main(datapath, plot="show")

View File

@ -8,9 +8,9 @@ edge: 0.25
# Number of electrodes to go over
number_electrodes: 3
minimum_electrodes: 2
# Boundary for search frequency in Hz
search_boundary: 100
# Search window bandwidth
# Cutoff frequency for envelope estimation by lowpass filter
envelope_cutoff: 25
@ -26,23 +26,24 @@ instantaneous_lowf: 15
instantaneous_highf: 8000
# Baseline envelope peak detection parameters
baseline_prominence_percentile: 90
# baseline_prominence_percentile: 90
# Search envelope peak detection parameters
search_prominence_percentile: 90
# search_prominence_percentile: 90
# Instantaneous frequency peak detection parameters
instantaneous_prominence_percentile: 90
# instantaneous_prominence_percentile: 90
prominence: 0.005
# search freq parameter
search_df_lower: 25
search_df_lower: 20
search_df_upper: 100
search_res: 1
search_freq_percentiles:
- 5
- 95
search_bandwidth: 10
default_search_freq: 50
# Classify events as chirps if they are less than this time apart
chirp_window_threshold: 0.05