new variable names
This commit is contained in:
parent
f6326de0b7
commit
9985686d53
@ -1,8 +1,8 @@
|
||||
from itertools import compress
|
||||
from dataclasses import dataclass
|
||||
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.signal import find_peaks
|
||||
from scipy.ndimage import gaussian_filter1d
|
||||
@ -23,6 +23,11 @@ ps = PlotStyle()
|
||||
|
||||
@dataclass
|
||||
class PlotBuffer:
|
||||
|
||||
"""
|
||||
Buffer to save data that is created in the main detection loop
|
||||
and plot it outside the detecion loop.
|
||||
"""
|
||||
config: ConfLoader
|
||||
t0: float
|
||||
dt: float
|
||||
@ -73,14 +78,15 @@ class PlotBuffer:
|
||||
figsize=(20 / 2.54, 12 / 2.54),
|
||||
constrained_layout=True,
|
||||
sharex=True,
|
||||
sharey='row',
|
||||
sharey="row",
|
||||
)
|
||||
|
||||
# plot spectrogram
|
||||
plot_spectrogram(axs[0], data_oi, self.data.raw_rate, self.t0)
|
||||
|
||||
for chirp in chirps:
|
||||
axs[0].scatter(chirp, np.median(self.frequency), c=ps.red)
|
||||
axs[0].scatter(chirp, np.median(self.frequency),
|
||||
c=ps.black, marker="x")
|
||||
|
||||
# plot waveform of filtered signal
|
||||
axs[1].plot(self.time, self.baseline, c=ps.green)
|
||||
@ -114,8 +120,9 @@ class PlotBuffer:
|
||||
self.frequency_filtered[self.frequency_peaks],
|
||||
c=ps.red,
|
||||
)
|
||||
axs[0].set_ylim(np.max(self.frequency)-200,
|
||||
top=np.max(self.frequency)+200)
|
||||
axs[0].set_ylim(
|
||||
np.max(self.frequency) - 200, top=np.max(self.frequency) + 200
|
||||
)
|
||||
axs[6].set_xlabel("Time [s]")
|
||||
axs[0].set_title("Spectrogram")
|
||||
axs[1].set_title("Fitered baseline")
|
||||
@ -123,20 +130,63 @@ class PlotBuffer:
|
||||
axs[3].set_title("Fitered baseline instanenous frequency")
|
||||
axs[4].set_title("Filtered envelope of baseline envelope")
|
||||
axs[5].set_title("Search envelope")
|
||||
axs[6].set_title(
|
||||
"Filtered absolute instantaneous frequency")
|
||||
axs[6].set_title("Filtered absolute instantaneous frequency")
|
||||
|
||||
if plot == 'show':
|
||||
if plot == "show":
|
||||
plt.show()
|
||||
elif plot == 'save':
|
||||
elif plot == "save":
|
||||
make_outputdir(self.config.outputdir)
|
||||
out = make_outputdir(self.config.outputdir +
|
||||
self.data.datapath.split('/')[-2] + '/')
|
||||
out = make_outputdir(
|
||||
self.config.outputdir + self.data.datapath.split("/")[-2] + "/"
|
||||
)
|
||||
|
||||
plt.savefig(f"{out}{self.track_id}_{self.t0}.pdf")
|
||||
plt.close()
|
||||
|
||||
|
||||
def plot_spectrogram(
|
||||
axis, signal: np.ndarray, samplerate: float, t0: float
|
||||
) -> None:
|
||||
"""
|
||||
Plot a spectrogram of a signal.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axis : matplotlib axis
|
||||
Axis to plot the spectrogram on.
|
||||
signal : np.ndarray
|
||||
Signal to plot the spectrogram from.
|
||||
samplerate : float
|
||||
Samplerate of the signal.
|
||||
t0 : float
|
||||
Start time of the signal.
|
||||
"""
|
||||
|
||||
logger.debug("Plotting spectrogram")
|
||||
|
||||
# compute spectrogram
|
||||
spec_power, spec_freqs, spec_times = spectrogram(
|
||||
signal,
|
||||
ratetime=samplerate,
|
||||
freq_resolution=20,
|
||||
overlap_frac=0.5,
|
||||
)
|
||||
|
||||
# axis.pcolormesh(
|
||||
# spec_times + t0,
|
||||
# spec_freqs,
|
||||
# decibel(spec_power),
|
||||
# )
|
||||
axis.imshow(
|
||||
decibel(spec_power),
|
||||
extent=[spec_times[0] + t0, spec_times[-1] +
|
||||
t0, spec_freqs[0], spec_freqs[-1]],
|
||||
aspect="auto",
|
||||
origin="lower",
|
||||
interpolation="gaussian",
|
||||
)
|
||||
|
||||
|
||||
def instantaneos_frequency(
|
||||
signal: np.ndarray, samplerate: int
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
@ -158,8 +208,9 @@ def instantaneos_frequency(
|
||||
# calculate instantaneos frequency with zero crossings
|
||||
roll_signal = np.roll(signal, shift=1)
|
||||
time_signal = np.arange(len(signal)) / samplerate
|
||||
period_index = np.arange(len(signal))[(
|
||||
roll_signal < 0) & (signal >= 0)][1:-1]
|
||||
period_index = np.arange(len(signal))[(roll_signal < 0) & (signal >= 0)][
|
||||
1:-1
|
||||
]
|
||||
|
||||
upper_bound = np.abs(signal[period_index])
|
||||
lower_bound = np.abs(signal[period_index - 1])
|
||||
@ -182,43 +233,12 @@ def instantaneos_frequency(
|
||||
return inst_freq_time, inst_freq
|
||||
|
||||
|
||||
def plot_spectrogram(axis, signal: np.ndarray, samplerate: float, t0: float) -> None:
|
||||
"""
|
||||
Plot a spectrogram of a signal.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axis : matplotlib axis
|
||||
Axis to plot the spectrogram on.
|
||||
signal : np.ndarray
|
||||
Signal to plot the spectrogram from.
|
||||
samplerate : float
|
||||
Samplerate of the signal.
|
||||
t0 : float
|
||||
Start time of the signal.
|
||||
"""
|
||||
|
||||
logger.debug("Plotting spectrogram")
|
||||
|
||||
# compute spectrogram
|
||||
spec_power, spec_freqs, spec_times = spectrogram(
|
||||
signal,
|
||||
ratetime=samplerate,
|
||||
freq_resolution=50,
|
||||
overlap_frac=0.2,
|
||||
)
|
||||
|
||||
axis.pcolormesh(
|
||||
spec_times + t0,
|
||||
spec_freqs,
|
||||
decibel(spec_power),
|
||||
)
|
||||
|
||||
axis.set_ylim(200, 1200)
|
||||
|
||||
|
||||
def double_bandpass(
|
||||
data: DataLoader, samplerate: int, freqs: np.ndarray, search_freq: float
|
||||
data: DataLoader,
|
||||
samplerate: int,
|
||||
freqs: np.ndarray,
|
||||
search_freq: float,
|
||||
config: ConfLoader
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Apply a bandpass filter to the baseline of a signal and a second bandpass
|
||||
@ -241,7 +261,7 @@ def double_bandpass(
|
||||
|
||||
"""
|
||||
# compute boundaries to filter baseline
|
||||
q25, q75 = np.percentile(freqs, [25, 75])
|
||||
q25, q50, q75 = np.percentile(freqs, [25, 50, 75])
|
||||
|
||||
# check if percentile delta is too small
|
||||
if q75 - q25 < 5:
|
||||
@ -253,13 +273,17 @@ def double_bandpass(
|
||||
|
||||
# filter search area
|
||||
filtered_search_freq = bandpass_filter(
|
||||
data, samplerate, lowf=q25 + search_freq, highf=q75 + search_freq
|
||||
data, samplerate,
|
||||
lowf=search_freq + q50 - config.search_bandwidth / 2,
|
||||
highf=search_freq + q50 + config.search_bandwidth / 2
|
||||
)
|
||||
|
||||
return (filtered_baseline, filtered_search_freq)
|
||||
return filtered_baseline, filtered_search_freq
|
||||
|
||||
|
||||
def freqmedian_allfish(data: LoadData, t0: float, dt: float) -> tuple[float, list[int]]:
|
||||
def freqmedian_allfish(
|
||||
data: LoadData, t0: float, dt: float
|
||||
) -> tuple[float, list[int]]:
|
||||
"""
|
||||
Calculate the median frequency of all fish in a given time window.
|
||||
|
||||
@ -283,8 +307,9 @@ def freqmedian_allfish(data: LoadData, t0: float, dt: float) -> tuple[float, lis
|
||||
|
||||
for _, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
|
||||
window_idx = np.arange(len(data.idx))[
|
||||
(data.ident == track_id) & (data.time[data.idx] >= t0) & (
|
||||
data.time[data.idx] <= (t0 + dt))
|
||||
(data.ident == track_id)
|
||||
& (data.time[data.idx] >= t0)
|
||||
& (data.time[data.idx] <= (t0 + dt))
|
||||
]
|
||||
|
||||
if len(data.freq[window_idx]) > 0:
|
||||
@ -298,6 +323,112 @@ def freqmedian_allfish(data: LoadData, t0: float, dt: float) -> tuple[float, lis
|
||||
return median_freq, track_ids
|
||||
|
||||
|
||||
def find_search_freq(
|
||||
freq_temp: np.ndarray,
|
||||
median_ids: np.ndarray,
|
||||
median_freq: np.ndarray,
|
||||
config: ConfLoader,
|
||||
data: LoadData,
|
||||
) -> float:
|
||||
"""
|
||||
Find the search frequency for each fish by checking which fish EODs are
|
||||
above the current EOD and finding a gap in them.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
freq_temp : np.ndarray
|
||||
Current EOD frequency array / the current fish of interest.
|
||||
median_ids : np.ndarray
|
||||
Array of track IDs of the medians of all other fish in the current window.
|
||||
median_freq : np.ndarray
|
||||
Array of median frequencies of all other fish in the current window.
|
||||
config : ConfLoader
|
||||
Configuration file.
|
||||
data : LoadData
|
||||
Data to find the search frequency from.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
|
||||
"""
|
||||
# frequency where second filter filters
|
||||
search_window = np.arange(
|
||||
np.median(freq_temp) + config.search_df_lower,
|
||||
np.median(freq_temp) + config.search_df_upper,
|
||||
config.search_res,
|
||||
)
|
||||
|
||||
# search window in boolean
|
||||
search_window_bool = np.ones(len(search_window), dtype=bool)
|
||||
|
||||
# get tracks that fall into search window
|
||||
check_track_ids = median_ids[
|
||||
(median_freq > search_window[0]) & (median_freq < search_window[-1])
|
||||
]
|
||||
|
||||
# iterate through theses tracks
|
||||
if check_track_ids.size != 0:
|
||||
|
||||
for j, check_track_id in enumerate(check_track_ids):
|
||||
|
||||
q1, q2 = np.percentile(
|
||||
data.freq[data.ident == check_track_id],
|
||||
config.search_freq_percentiles,
|
||||
)
|
||||
|
||||
search_window_bool[
|
||||
(search_window > q1) & (search_window < q2)
|
||||
] = False
|
||||
|
||||
# find gaps in search window
|
||||
search_window_indices = np.arange(len(search_window))
|
||||
|
||||
# get search window gaps
|
||||
search_window_gaps = np.diff(search_window_bool, append=np.nan)
|
||||
nonzeros = search_window_gaps[np.nonzero(search_window_gaps)[0]]
|
||||
nonzeros = nonzeros[~np.isnan(nonzeros)]
|
||||
|
||||
# if the first value is -1, the array starst with true, so a gap
|
||||
if nonzeros[0] == -1:
|
||||
stops = search_window_indices[search_window_gaps == -1]
|
||||
starts = np.append(
|
||||
0, search_window_indices[search_window_gaps == 1]
|
||||
)
|
||||
|
||||
# if the last value is -1, the array ends with true, so a gap
|
||||
if nonzeros[-1] == 1:
|
||||
stops = np.append(
|
||||
search_window_indices[search_window_gaps == -1],
|
||||
len(search_window) - 1,
|
||||
)
|
||||
|
||||
# else it starts with false, so no gap
|
||||
if nonzeros[0] == 1:
|
||||
stops = search_window_indices[search_window_gaps == -1]
|
||||
starts = search_window_indices[search_window_gaps == 1]
|
||||
|
||||
# if the last value is -1, the array ends with true, so a gap
|
||||
if nonzeros[-1] == 1:
|
||||
stops = np.append(
|
||||
search_window_indices[search_window_gaps == -1],
|
||||
len(search_window),
|
||||
)
|
||||
|
||||
# get the frequency ranges of the gaps
|
||||
search_windows = [search_window[x:y] for x, y in zip(starts, stops)]
|
||||
search_windows_lens = [len(x) for x in search_windows]
|
||||
longest_search_window = search_windows[np.argmax(search_windows_lens)]
|
||||
|
||||
search_freq = (
|
||||
longest_search_window[-1] - longest_search_window[0]) / 2
|
||||
|
||||
else:
|
||||
search_freq = config.default_search_freq
|
||||
|
||||
return search_freq
|
||||
|
||||
|
||||
def main(datapath: str, plot: str) -> None:
|
||||
|
||||
assert plot in ["save", "show", "false"]
|
||||
@ -328,24 +459,24 @@ def main(datapath: str, plot: str) -> None:
|
||||
# make time array for raw data
|
||||
raw_time = np.arange(data.raw.shape[0]) / data.raw_rate
|
||||
|
||||
# # good chirp times for data: 2022-06-02-10_00
|
||||
# t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
|
||||
# dt = 60 * data.raw_rate
|
||||
# good chirp times for data: 2022-06-02-10_00
|
||||
t0 = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
|
||||
dt = 60 * data.raw_rate
|
||||
|
||||
t0 = 0
|
||||
dt = data.raw.shape[0]
|
||||
# t0 = 0
|
||||
# dt = data.raw.shape[0]
|
||||
|
||||
# generate starting points of rolling window
|
||||
window_starts = np.arange(
|
||||
t0,
|
||||
t0 + dt,
|
||||
window_duration - (window_overlap + 2 * window_edge),
|
||||
dtype=int
|
||||
dtype=int,
|
||||
)
|
||||
|
||||
# ititialize lists to store data
|
||||
chirps = []
|
||||
fish_ids = []
|
||||
multiwindow_chirps = []
|
||||
multiwindow_ids = []
|
||||
|
||||
for st, start_index in enumerate(window_starts):
|
||||
|
||||
@ -362,14 +493,17 @@ def main(datapath: str, plot: str) -> None:
|
||||
median_freq, median_ids = freqmedian_allfish(data, t0, dt)
|
||||
|
||||
# iterate through all fish
|
||||
for tr, track_id in enumerate(np.unique(data.ident[~np.isnan(data.ident)])):
|
||||
for tr, track_id in enumerate(
|
||||
np.unique(data.ident[~np.isnan(data.ident)])
|
||||
):
|
||||
|
||||
logger.debug(f"Processing track {tr} of {len(data.ids)}")
|
||||
|
||||
# get index of track data in this time window
|
||||
window_idx = np.arange(len(data.idx))[
|
||||
(data.ident == track_id) & (data.time[data.idx] >= t0) & (
|
||||
data.time[data.idx] <= (t0 + dt))
|
||||
(data.ident == track_id)
|
||||
& (data.time[data.idx] >= t0)
|
||||
& (data.time[data.idx] <= (t0 + dt))
|
||||
]
|
||||
|
||||
# get tracked frequencies and their times
|
||||
@ -384,99 +518,45 @@ def main(datapath: str, plot: str) -> None:
|
||||
# check if tracked data available in this window
|
||||
if len(freq_temp) < expected_duration * 0.5:
|
||||
logger.warning(
|
||||
f"Track {track_id} has no data in window {st}, skipping.")
|
||||
f"Track {track_id} has no data in window {st}, skipping."
|
||||
)
|
||||
continue
|
||||
|
||||
# check if there are powers available in this window
|
||||
nanchecker = np.unique(np.isnan(powers_temp))
|
||||
if (len(nanchecker) == 1) and nanchecker[0] == True:
|
||||
if (len(nanchecker) == 1) and nanchecker[0]:
|
||||
logger.warning(
|
||||
f"No powers available for track {track_id} window {st}, skipping.")
|
||||
f"No powers available for track {track_id} window {st}, \
|
||||
skipping."
|
||||
)
|
||||
continue
|
||||
|
||||
best_electrodes = np.argsort(np.nanmean(
|
||||
powers_temp, axis=0))[-config.number_electrodes:]
|
||||
|
||||
# frequency where second filter filters
|
||||
search_window = np.arange(
|
||||
np.median(freq_temp)+config.search_df_lower, np.median(
|
||||
freq_temp)+config.search_df_upper, config.search_res)
|
||||
|
||||
# search window in boolean
|
||||
search_window_bool = np.ones(len(search_window), dtype=bool)
|
||||
|
||||
# get tracks that fall into search window
|
||||
check_track_ids = median_ids[(median_freq > search_window[0]) & (
|
||||
median_freq < search_window[-1])]
|
||||
|
||||
# iterate through theses tracks
|
||||
if check_track_ids.size != 0:
|
||||
|
||||
for j, check_track_id in enumerate(check_track_ids):
|
||||
|
||||
q1, q2 = np.percentile(
|
||||
data.freq[data.ident == check_track_id],
|
||||
config.search_freq_percentiles
|
||||
)
|
||||
|
||||
search_window_bool[(search_window > q1) & (
|
||||
search_window < q2)] = False
|
||||
|
||||
# find gaps in search window
|
||||
search_window_indices = np.arange(len(search_window))
|
||||
|
||||
# get search window gaps
|
||||
search_window_gaps = np.diff(search_window_bool, append=np.nan)
|
||||
nonzeros = search_window_gaps[np.nonzero(
|
||||
search_window_gaps)[0]]
|
||||
nonzeros = nonzeros[~np.isnan(nonzeros)]
|
||||
|
||||
# if the first value is -1, the array starst with true, so a gap
|
||||
if nonzeros[0] == -1:
|
||||
stops = search_window_indices[search_window_gaps == -1]
|
||||
starts = np.append(
|
||||
0, search_window_indices[search_window_gaps == 1])
|
||||
|
||||
# if the last value is -1, the array ends with true, so a gap
|
||||
if nonzeros[-1] == 1:
|
||||
stops = np.append(
|
||||
search_window_indices[search_window_gaps == -1],
|
||||
len(search_window) - 1
|
||||
)
|
||||
|
||||
# else it starts with false, so no gap
|
||||
if nonzeros[0] == 1:
|
||||
stops = search_window_indices[search_window_gaps == -1]
|
||||
starts = search_window_indices[search_window_gaps == 1]
|
||||
|
||||
# if the last value is -1, the array ends with true, so a gap
|
||||
if nonzeros[-1] == 1:
|
||||
stops = np.append(
|
||||
search_window_indices[search_window_gaps == -1],
|
||||
len(search_window)
|
||||
)
|
||||
|
||||
# get the frequency ranges of the gaps
|
||||
search_windows = [search_window[x:y]
|
||||
for x, y in zip(starts, stops)]
|
||||
search_windows_lens = [len(x) for x in search_windows]
|
||||
longest_search_window = search_windows[np.argmax(
|
||||
search_windows_lens)]
|
||||
|
||||
search_freq = (
|
||||
longest_search_window[1] - longest_search_window[0]) / 2
|
||||
# find the strongest electrodes for the current fish in the current
|
||||
# window
|
||||
best_electrodes = np.argsort(np.nanmean(powers_temp, axis=0))[
|
||||
-config.number_electrodes:
|
||||
]
|
||||
|
||||
else:
|
||||
search_freq = config.default_search_freq
|
||||
# find a frequency above the baseline of the current fish in which
|
||||
# no other fish is active to search for chirps there
|
||||
search_freq = find_search_freq(
|
||||
config=config,
|
||||
freq_temp=freq_temp,
|
||||
median_ids=median_ids,
|
||||
data=data,
|
||||
median_freq=median_freq,
|
||||
)
|
||||
|
||||
# ----------- chrips on the two best electrodes-----------
|
||||
chirps_electrodes = []
|
||||
# add all chirps that are detected on mulitple electrodes for one
|
||||
# fish fish in one window to this list
|
||||
multielectrode_chirps = []
|
||||
|
||||
# iterate through electrodes
|
||||
for el, electrode in enumerate(best_electrodes):
|
||||
|
||||
logger.debug(
|
||||
f"Processing electrode {el} of {len(best_electrodes)}")
|
||||
f"Processing electrode {el} of {len(best_electrodes)}"
|
||||
)
|
||||
|
||||
# load region of interest of raw data file
|
||||
data_oi = data.raw[start_index:stop_index, :]
|
||||
@ -487,15 +567,8 @@ def main(datapath: str, plot: str) -> None:
|
||||
data_oi[:, electrode],
|
||||
data.raw_rate,
|
||||
freq_temp,
|
||||
search_freq
|
||||
)
|
||||
|
||||
# compute instantaneous frequency on broad signal
|
||||
broad_baseline = bandpass_filter(
|
||||
data_oi[:, electrode],
|
||||
data.raw_rate,
|
||||
lowf=np.mean(freq_temp)-5,
|
||||
highf=np.mean(freq_temp)+100
|
||||
search_freq,
|
||||
config=config,
|
||||
)
|
||||
|
||||
# compute instantaneous frequency on narrow signal
|
||||
@ -505,67 +578,73 @@ def main(datapath: str, plot: str) -> None:
|
||||
|
||||
# compute envelopes
|
||||
baseline_envelope_unfiltered = envelope(
|
||||
baseline, data.raw_rate, config.envelope_cutoff)
|
||||
baseline, data.raw_rate, config.envelope_cutoff
|
||||
)
|
||||
search_envelope = envelope(
|
||||
search, data.raw_rate, config.envelope_cutoff)
|
||||
search, data.raw_rate, config.envelope_cutoff
|
||||
)
|
||||
|
||||
# highpass filter envelopes
|
||||
baseline_envelope = highpass_filter(
|
||||
baseline_envelope_unfiltered,
|
||||
data.raw_rate,
|
||||
config.envelope_highpass_cutoff
|
||||
config.envelope_highpass_cutoff,
|
||||
)
|
||||
|
||||
# envelopes of filtered envelope of filtered baseline
|
||||
baseline_envelope = envelope(
|
||||
np.abs(baseline_envelope),
|
||||
data.raw_rate,
|
||||
config.envelope_envelope_cutoff
|
||||
config.envelope_envelope_cutoff,
|
||||
)
|
||||
|
||||
# bandpass filter the instantaneous
|
||||
# bandpass filter the instantaneous frequency to put it to 0
|
||||
inst_freq_filtered = bandpass_filter(
|
||||
baseline_freq,
|
||||
data.raw_rate,
|
||||
lowf=config.instantaneous_lowf,
|
||||
highf=config.instantaneous_highf
|
||||
highf=config.instantaneous_highf,
|
||||
)
|
||||
|
||||
# CUT OFF OVERLAP ---------------------------------------------
|
||||
|
||||
# cut off first and last 0.5 * overlap at start and end
|
||||
# overwrite raw time to valid region, i.e. cut off snippet at
|
||||
# start and end of each window to remove filter effects
|
||||
valid = np.arange(
|
||||
int(window_edge), len(baseline_envelope) -
|
||||
int(window_edge)
|
||||
int(window_edge), len(baseline_envelope) - int(window_edge)
|
||||
)
|
||||
baseline_envelope_unfiltered = baseline_envelope_unfiltered[valid]
|
||||
baseline_envelope_unfiltered = baseline_envelope_unfiltered[
|
||||
valid
|
||||
]
|
||||
baseline_envelope = baseline_envelope[valid]
|
||||
search_envelope = search_envelope[valid]
|
||||
|
||||
# get inst freq valid snippet
|
||||
valid_t0 = int(window_edge) / data.raw_rate
|
||||
valid_t1 = baseline_freq_time[-1] - \
|
||||
(int(window_edge) / data.raw_rate)
|
||||
valid_t1 = baseline_freq_time[-1] - (
|
||||
int(window_edge) / data.raw_rate
|
||||
)
|
||||
|
||||
inst_freq_filtered = inst_freq_filtered[
|
||||
(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)
|
||||
(baseline_freq_time >= valid_t0)
|
||||
& (baseline_freq_time <= valid_t1)
|
||||
]
|
||||
|
||||
baseline_freq = baseline_freq[
|
||||
(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)
|
||||
(baseline_freq_time >= valid_t0)
|
||||
& (baseline_freq_time <= valid_t1)
|
||||
]
|
||||
|
||||
baseline_freq_time = baseline_freq_time[
|
||||
(baseline_freq_time >= valid_t0) & (
|
||||
baseline_freq_time <= valid_t1)
|
||||
] + t0
|
||||
baseline_freq_time = (
|
||||
baseline_freq_time[
|
||||
(baseline_freq_time >= valid_t0)
|
||||
& (baseline_freq_time <= valid_t1)
|
||||
]
|
||||
+ t0
|
||||
)
|
||||
|
||||
# overwrite raw time to valid region
|
||||
time_oi = time_oi[valid]
|
||||
baseline = baseline[valid]
|
||||
broad_baseline = broad_baseline[valid]
|
||||
search = search[valid]
|
||||
|
||||
# NORMALIZE ---------------------------------------------------
|
||||
@ -576,49 +655,59 @@ def main(datapath: str, plot: str) -> None:
|
||||
|
||||
# PEAK DETECTION ----------------------------------------------
|
||||
|
||||
prominence = config.prominence
|
||||
|
||||
# detect peaks baseline_enelope
|
||||
prominence = np.percentile(
|
||||
baseline_envelope, config.baseline_prominence_percentile)
|
||||
baseline_peaks, _ = find_peaks(
|
||||
baseline_envelope, prominence=prominence)
|
||||
|
||||
baseline_envelope, prominence=prominence
|
||||
)
|
||||
# detect peaks search_envelope
|
||||
prominence = np.percentile(
|
||||
search_envelope, config.search_prominence_percentile)
|
||||
search_peaks, _ = find_peaks(
|
||||
search_envelope, prominence=prominence)
|
||||
|
||||
# detect peaks inst_freq_filtered
|
||||
prominence = np.percentile(
|
||||
inst_freq_filtered,
|
||||
config.instantaneous_prominence_percentile
|
||||
search_envelope, prominence=prominence
|
||||
)
|
||||
# detect peaks inst_freq_filtered
|
||||
inst_freq_peaks, _ = find_peaks(
|
||||
inst_freq_filtered,
|
||||
prominence=prominence
|
||||
inst_freq_filtered, prominence=prominence
|
||||
)
|
||||
|
||||
# DETECT CHIRPS IN SEARCH WINDOW -------------------------------
|
||||
# DETECT CHIRPS IN SEARCH WINDOW ------------------------------
|
||||
|
||||
# get the peak timestamps from the peak indices
|
||||
baseline_ts = time_oi[baseline_peaks]
|
||||
search_ts = time_oi[search_peaks]
|
||||
freq_ts = baseline_freq_time[inst_freq_peaks]
|
||||
|
||||
# check if one list is empty
|
||||
if len(baseline_ts) == 0 or len(search_ts) == 0 or len(freq_ts) == 0:
|
||||
# check if one list is empty and if so, skip to the next
|
||||
# electrode because a chirp cannot be detected if one is empty
|
||||
if (
|
||||
len(baseline_ts) == 0
|
||||
or len(search_ts) == 0
|
||||
or len(freq_ts) == 0
|
||||
):
|
||||
continue
|
||||
|
||||
current_chirps = group_timestamps(
|
||||
[list(baseline_ts), list(search_ts), list(freq_ts)], 3, config.chirp_window_threshold)
|
||||
# for checking if there are chirps on multiple electrodes
|
||||
if len(current_chirps) == 0:
|
||||
# group peak across feature arrays but only if they
|
||||
# occur in all 3 feature arrays
|
||||
singleelectrode_chirps = group_timestamps(
|
||||
[list(baseline_ts), list(search_ts), list(freq_ts)],
|
||||
3,
|
||||
config.chirp_window_threshold,
|
||||
)
|
||||
|
||||
# check it there are chirps detected after grouping, continue
|
||||
# with the loop if not
|
||||
if len(singleelectrode_chirps) == 0:
|
||||
continue
|
||||
|
||||
chirps_electrodes.append(current_chirps)
|
||||
# append chirps from this electrode to the multilectrode list
|
||||
multielectrode_chirps.append(singleelectrode_chirps)
|
||||
|
||||
if (el == config.number_electrodes - 1) & \
|
||||
(len(current_chirps) > 0) & \
|
||||
(plot in ["show", "save"]):
|
||||
# only initialize the plotting buffer if chirps are detected
|
||||
if (
|
||||
(el == config.number_electrodes - 1)
|
||||
& (len(singleelectrode_chirps) > 0)
|
||||
& (plot in ["show", "save"])
|
||||
):
|
||||
|
||||
logger.debug("Detected chirp, ititialize buffer ...")
|
||||
|
||||
@ -646,21 +735,37 @@ def main(datapath: str, plot: str) -> None:
|
||||
logger.debug("Buffer initialized!")
|
||||
|
||||
logger.debug(
|
||||
f"Processed all electrodes for fish {track_id} for this window, sorting chirps ...")
|
||||
f"Processed all electrodes for fish {track_id} for this \
|
||||
window, sorting chirps ..."
|
||||
)
|
||||
|
||||
if len(chirps_electrodes) == 0:
|
||||
# check if there are chirps detected in multiple electrodes and
|
||||
# continue the loop if not
|
||||
if len(multielectrode_chirps) == 0:
|
||||
continue
|
||||
|
||||
the_real_chirps = group_timestamps(chirps_electrodes, 2, 0.05)
|
||||
# validate multielectrode chirps, i.e. check if they are
|
||||
# detected in at least 'config.min_electrodes' electrodes
|
||||
multielectrode_chirps_validated = group_timestamps(
|
||||
multielectrode_chirps,
|
||||
config.minimum_electrodes,
|
||||
config.chirp_window_threshold
|
||||
)
|
||||
|
||||
chirps.append(the_real_chirps)
|
||||
fish_ids.append(track_id)
|
||||
# add validated chirps to the list that tracks chirps across there
|
||||
# rolling time windows
|
||||
multiwindow_chirps.append(multielectrode_chirps_validated)
|
||||
multiwindow_ids.append(track_id)
|
||||
|
||||
logger.debug('Found %d chirps, starting plotting ... ' %
|
||||
len(the_real_chirps))
|
||||
if len(the_real_chirps) > 0:
|
||||
logger.debug(
|
||||
"Found %d chirps, starting plotting ... "
|
||||
% len(multielectrode_chirps_validated)
|
||||
)
|
||||
# if chirps are detected and the plot flag is set, plot the
|
||||
# chirps, otheswise try to delete the buffer if it exists
|
||||
if len(multielectrode_chirps_validated) > 0:
|
||||
try:
|
||||
buffer.plot_buffer(the_real_chirps, plot)
|
||||
buffer.plot_buffer(multielectrode_chirps_validated, plot)
|
||||
except NameError:
|
||||
pass
|
||||
else:
|
||||
@ -669,29 +774,42 @@ def main(datapath: str, plot: str) -> None:
|
||||
except NameError:
|
||||
pass
|
||||
|
||||
chirps_new = []
|
||||
chirps_ids = []
|
||||
for tr in np.unique(fish_ids):
|
||||
tr_index = np.asarray(fish_ids) == tr
|
||||
ts = flatten(list(compress(chirps, tr_index)))
|
||||
chirps_new.extend(ts)
|
||||
chirps_ids.extend(list(np.ones_like(ts)*tr))
|
||||
|
||||
# purge duplicates
|
||||
# flatten list of lists containing chirps and create
|
||||
# an array of fish ids that correspond to the chirps
|
||||
multiwindow_chirps_flat = []
|
||||
multiwindow_ids_flat = []
|
||||
for tr in np.unique(multiwindow_ids):
|
||||
tr_index = np.asarray(multiwindow_ids) == tr
|
||||
ts = flatten(list(compress(multiwindow_chirps, tr_index)))
|
||||
multiwindow_chirps_flat.extend(ts)
|
||||
multiwindow_ids_flat.extend(list(np.ones_like(ts) * tr))
|
||||
|
||||
# purge duplicates, i.e. chirps that are very close to each other
|
||||
# duplites arise due to overlapping windows
|
||||
purged_chirps = []
|
||||
purged_chirps_ids = []
|
||||
for tr in np.unique(fish_ids):
|
||||
tr_chirps = np.asarray(chirps_new)[np.asarray(chirps_ids) == tr]
|
||||
purged_ids = []
|
||||
for tr in np.unique(multiwindow_ids_flat):
|
||||
tr_chirps = np.asarray(multiwindow_chirps_flat)[
|
||||
np.asarray(multiwindow_ids_flat) == tr]
|
||||
if len(tr_chirps) > 0:
|
||||
tr_chirps_purged = purge_duplicates(
|
||||
tr_chirps, config.chirp_window_threshold)
|
||||
tr_chirps, config.chirp_window_threshold
|
||||
)
|
||||
purged_chirps.extend(list(tr_chirps_purged))
|
||||
purged_chirps_ids.extend(list(np.ones_like(tr_chirps_purged)*tr))
|
||||
purged_ids.extend(list(np.ones_like(tr_chirps_purged) * tr))
|
||||
|
||||
# sort chirps by time
|
||||
purged_chirps = np.asarray(purged_chirps)
|
||||
purged_ids = np.asarray(purged_ids)
|
||||
purged_ids = purged_ids[np.argsort(purged_chirps)]
|
||||
purged_chirps = purged_chirps[np.argsort(purged_chirps)]
|
||||
|
||||
np.save(datapath + 'chirps.npy', purged_chirps)
|
||||
np.save(datapath + 'chirps_ids.npy', purged_chirps_ids)
|
||||
# save them into the data directory
|
||||
np.save(datapath + "chirps.npy", purged_chirps)
|
||||
np.save(datapath + "chirp_ids.npy", purged_ids)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# datapath = "/home/weygoldt/Data/uni/chirpdetection/GP2023_chirp_detection/data/mount_data/2020-05-13-10_00/"
|
||||
datapath = "../data/2022-06-02-10_00/"
|
||||
main(datapath, plot="save")
|
||||
main(datapath, plot="show")
|
||||
|
@ -8,9 +8,9 @@ edge: 0.25
|
||||
|
||||
# Number of electrodes to go over
|
||||
number_electrodes: 3
|
||||
minimum_electrodes: 2
|
||||
|
||||
# Boundary for search frequency in Hz
|
||||
search_boundary: 100
|
||||
# Search window bandwidth
|
||||
|
||||
# Cutoff frequency for envelope estimation by lowpass filter
|
||||
envelope_cutoff: 25
|
||||
@ -26,23 +26,24 @@ instantaneous_lowf: 15
|
||||
instantaneous_highf: 8000
|
||||
|
||||
# Baseline envelope peak detection parameters
|
||||
baseline_prominence_percentile: 90
|
||||
# baseline_prominence_percentile: 90
|
||||
|
||||
# Search envelope peak detection parameters
|
||||
search_prominence_percentile: 90
|
||||
# search_prominence_percentile: 90
|
||||
|
||||
# Instantaneous frequency peak detection parameters
|
||||
instantaneous_prominence_percentile: 90
|
||||
# instantaneous_prominence_percentile: 90
|
||||
|
||||
prominence: 0.005
|
||||
|
||||
# search freq parameter
|
||||
search_df_lower: 25
|
||||
search_df_lower: 20
|
||||
search_df_upper: 100
|
||||
search_res: 1
|
||||
search_freq_percentiles:
|
||||
- 5
|
||||
- 95
|
||||
search_bandwidth: 10
|
||||
default_search_freq: 50
|
||||
|
||||
# Classify events as chirps if they are less than this time apart
|
||||
chirp_window_threshold: 0.05
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user