Merge branch 'master' of https://whale.am28.uni-tuebingen.de/git/raab/GP2023_chirp_detection
This commit is contained in:
commit
dda0d645f3
@ -21,13 +21,20 @@ def main(datapath: str):
|
||||
|
||||
foldernames = [
|
||||
datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
||||
path_to_csv = (
|
||||
path_order_meta = (
|
||||
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
|
||||
meta_id = read_csv(path_to_csv)
|
||||
meta_id['recording'] = meta_id['recording'].str[1:-1]
|
||||
order_meta_df = read_csv(path_order_meta)
|
||||
order_meta_df['recording'] = order_meta_df['recording'].str[1:-1]
|
||||
path_id_meta = (
|
||||
'/').join(foldernames[0].split('/')[:-2]) + '/id_meta.csv'
|
||||
id_meta_df = read_csv(path_id_meta)
|
||||
|
||||
chirps_winner = []
|
||||
size_diff = []
|
||||
chirps_diff = []
|
||||
chirps_loser = []
|
||||
freq_diff = []
|
||||
|
||||
|
||||
for foldername in foldernames:
|
||||
# behabvior is pandas dataframe with all the data
|
||||
@ -43,51 +50,104 @@ def main(datapath: str):
|
||||
category, timestamps = correct_chasing_events(category, timestamps)
|
||||
|
||||
folder_name = foldername.split('/')[-2]
|
||||
winner_row = meta_id[meta_id['recording'] == folder_name]
|
||||
winner_row = order_meta_df[order_meta_df['recording'] == folder_name]
|
||||
winner = winner_row['winner'].values[0].astype(int)
|
||||
winner_fish1 = winner_row['fish1'].values[0].astype(int)
|
||||
winner_fish2 = winner_row['fish2'].values[0].astype(int)
|
||||
|
||||
groub = winner_row['group'].values[0].astype(int)
|
||||
size_rows = id_meta_df[id_meta_df['group'] == groub]
|
||||
|
||||
|
||||
if winner == winner_fish1:
|
||||
winner_fish_id = winner_row['rec_id1'].values[0]
|
||||
loser_fish_id = winner_row['rec_id2'].values[0]
|
||||
|
||||
size_winners = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_winner = size_rows[size_rows['fish']== winner_fish1][l].values[0]
|
||||
size_winners.append(size_winner)
|
||||
mean_size_winner = np.nanmean(size_winners)
|
||||
|
||||
|
||||
size_losers = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_loser = size_rows[size_rows['fish']== winner_fish2][l].values[0]
|
||||
size_losers.append(size_loser)
|
||||
mean_size_loser = np.nanmean(size_losers)
|
||||
|
||||
size_diff.append(mean_size_winner - mean_size_loser)
|
||||
|
||||
elif winner == winner_fish2:
|
||||
winner_fish_id = winner_row['rec_id2'].values[0]
|
||||
loser_fish_id = winner_row['rec_id1'].values[0]
|
||||
|
||||
size_winners = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_winner = size_rows[size_rows['fish']== winner_fish2][l].values[0]
|
||||
size_winners.append(size_winner)
|
||||
mean_size_winner = np.nanmean(size_winners)
|
||||
|
||||
size_losers = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_loser = size_rows[size_rows['fish']== winner_fish1][l].values[0]
|
||||
size_losers.append(size_loser)
|
||||
mean_size_loser = np.nanmean(size_losers)
|
||||
|
||||
size_diff.append(mean_size_winner - mean_size_loser)
|
||||
else:
|
||||
continue
|
||||
|
||||
print(foldername)
|
||||
all_fish_ids = np.unique(bh.chirps_ids)
|
||||
chirp_loser = len(bh.chirps[bh.chirps_ids == loser_fish_id])
|
||||
chirp_winner = len(bh.chirps[bh.chirps_ids == winner_fish_id])
|
||||
chirp_loser = len(bh.chirps[bh.chirps_ids == loser_fish_id])
|
||||
|
||||
freq_winner = np.nanmedian(bh.freq[bh.ident==winner_fish_id])
|
||||
freq_loser = np.nanmedian(bh.freq[bh.ident==loser_fish_id])
|
||||
|
||||
|
||||
chirps_winner.append(chirp_winner)
|
||||
chirps_loser.append(chirp_loser)
|
||||
|
||||
chirps_diff.append(chirp_winner - chirp_loser)
|
||||
freq_diff.append(freq_winner - freq_loser)
|
||||
|
||||
fish1_id = all_fish_ids[0]
|
||||
fish2_id = all_fish_ids[1]
|
||||
print(winner_fish_id)
|
||||
print(all_fish_ids)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(1,3, figsize=(10,5))
|
||||
scatterwinner = 1.15
|
||||
scatterloser = 1.85
|
||||
bplot1 = ax.boxplot(chirps_winner, positions=[
|
||||
bplot1 = ax1.boxplot(chirps_winner, positions=[
|
||||
1], showfliers=False, patch_artist=True)
|
||||
bplot2 = ax.boxplot(chirps_loser, positions=[
|
||||
bplot2 = ax1.boxplot(chirps_loser, positions=[
|
||||
2], showfliers=False, patch_artist=True)
|
||||
ax.scatter(np.ones(len(chirps_winner))*scatterwinner, chirps_winner, color='r')
|
||||
ax.scatter(np.ones(len(chirps_loser))*scatterloser, chirps_loser, color='r')
|
||||
ax.set_xticklabels(['winner', 'loser'])
|
||||
ax1.scatter(np.ones(len(chirps_winner))*scatterwinner, chirps_winner, color='r')
|
||||
ax1.scatter(np.ones(len(chirps_loser))*scatterloser, chirps_loser, color='r')
|
||||
ax1.set_xticklabels(['winner', 'loser'])
|
||||
ax1.text(0.9, 0.9, f'n = {len(chirps_winner)}', transform=ax1.transAxes, color= ps.white)
|
||||
|
||||
for w, l in zip(chirps_winner, chirps_loser):
|
||||
ax.plot([scatterwinner, scatterloser], [w, l], color='r', alpha=0.5, linewidth=0.5)
|
||||
ax1.plot([scatterwinner, scatterloser], [w, l], color='r', alpha=0.5, linewidth=0.5)
|
||||
|
||||
colors1 = ps.red
|
||||
ps.set_boxplot_color(bplot1, colors1)
|
||||
colors1 = ps.orange
|
||||
ps.set_boxplot_color(bplot2, colors1)
|
||||
ax1.set_ylabel('Chirpscounts [n]')
|
||||
|
||||
ax2.scatter(size_diff, chirps_diff, color='r')
|
||||
ax2.set_xlabel('Size difference [mm]')
|
||||
ax2.set_ylabel('Chirps difference [n]')
|
||||
|
||||
ax3.scatter(freq_diff, chirps_diff, color='r')
|
||||
ax3.set_xlabel('Frequency difference [Hz]')
|
||||
ax3.set_yticklabels([])
|
||||
ax3.set
|
||||
|
||||
ax.set_ylabel('Chirpscounts [n]')
|
||||
plt.savefig('../poster/figs/chirps_winner_loser.pdf')
|
||||
plt.show()
|
||||
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user