This commit is contained in:
weygoldt 2023-01-24 17:27:43 +01:00
commit dda0d645f3
2 changed files with 73 additions and 13 deletions

View File

@ -21,13 +21,20 @@ def main(datapath: str):
foldernames = [
datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
path_to_csv = (
path_order_meta = (
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
meta_id = read_csv(path_to_csv)
meta_id['recording'] = meta_id['recording'].str[1:-1]
order_meta_df = read_csv(path_order_meta)
order_meta_df['recording'] = order_meta_df['recording'].str[1:-1]
path_id_meta = (
'/').join(foldernames[0].split('/')[:-2]) + '/id_meta.csv'
id_meta_df = read_csv(path_id_meta)
chirps_winner = []
size_diff = []
chirps_diff = []
chirps_loser = []
freq_diff = []
for foldername in foldernames:
# behabvior is pandas dataframe with all the data
@ -43,51 +50,104 @@ def main(datapath: str):
category, timestamps = correct_chasing_events(category, timestamps)
folder_name = foldername.split('/')[-2]
winner_row = meta_id[meta_id['recording'] == folder_name]
winner_row = order_meta_df[order_meta_df['recording'] == folder_name]
winner = winner_row['winner'].values[0].astype(int)
winner_fish1 = winner_row['fish1'].values[0].astype(int)
winner_fish2 = winner_row['fish2'].values[0].astype(int)
groub = winner_row['group'].values[0].astype(int)
size_rows = id_meta_df[id_meta_df['group'] == groub]
if winner == winner_fish1:
winner_fish_id = winner_row['rec_id1'].values[0]
loser_fish_id = winner_row['rec_id2'].values[0]
size_winners = []
for l in ['l1', 'l2', 'l3']:
size_winner = size_rows[size_rows['fish']== winner_fish1][l].values[0]
size_winners.append(size_winner)
mean_size_winner = np.nanmean(size_winners)
size_losers = []
for l in ['l1', 'l2', 'l3']:
size_loser = size_rows[size_rows['fish']== winner_fish2][l].values[0]
size_losers.append(size_loser)
mean_size_loser = np.nanmean(size_losers)
size_diff.append(mean_size_winner - mean_size_loser)
elif winner == winner_fish2:
winner_fish_id = winner_row['rec_id2'].values[0]
loser_fish_id = winner_row['rec_id1'].values[0]
size_winners = []
for l in ['l1', 'l2', 'l3']:
size_winner = size_rows[size_rows['fish']== winner_fish2][l].values[0]
size_winners.append(size_winner)
mean_size_winner = np.nanmean(size_winners)
size_losers = []
for l in ['l1', 'l2', 'l3']:
size_loser = size_rows[size_rows['fish']== winner_fish1][l].values[0]
size_losers.append(size_loser)
mean_size_loser = np.nanmean(size_losers)
size_diff.append(mean_size_winner - mean_size_loser)
else:
continue
print(foldername)
all_fish_ids = np.unique(bh.chirps_ids)
chirp_loser = len(bh.chirps[bh.chirps_ids == loser_fish_id])
chirp_winner = len(bh.chirps[bh.chirps_ids == winner_fish_id])
chirp_loser = len(bh.chirps[bh.chirps_ids == loser_fish_id])
freq_winner = np.nanmedian(bh.freq[bh.ident==winner_fish_id])
freq_loser = np.nanmedian(bh.freq[bh.ident==loser_fish_id])
chirps_winner.append(chirp_winner)
chirps_loser.append(chirp_loser)
chirps_diff.append(chirp_winner - chirp_loser)
freq_diff.append(freq_winner - freq_loser)
fish1_id = all_fish_ids[0]
fish2_id = all_fish_ids[1]
print(winner_fish_id)
print(all_fish_ids)
fig, ax = plt.subplots()
fig, (ax1, ax2, ax3) = plt.subplots(1,3, figsize=(10,5))
scatterwinner = 1.15
scatterloser = 1.85
bplot1 = ax.boxplot(chirps_winner, positions=[
bplot1 = ax1.boxplot(chirps_winner, positions=[
1], showfliers=False, patch_artist=True)
bplot2 = ax.boxplot(chirps_loser, positions=[
bplot2 = ax1.boxplot(chirps_loser, positions=[
2], showfliers=False, patch_artist=True)
ax.scatter(np.ones(len(chirps_winner))*scatterwinner, chirps_winner, color='r')
ax.scatter(np.ones(len(chirps_loser))*scatterloser, chirps_loser, color='r')
ax.set_xticklabels(['winner', 'loser'])
ax1.scatter(np.ones(len(chirps_winner))*scatterwinner, chirps_winner, color='r')
ax1.scatter(np.ones(len(chirps_loser))*scatterloser, chirps_loser, color='r')
ax1.set_xticklabels(['winner', 'loser'])
ax1.text(0.9, 0.9, f'n = {len(chirps_winner)}', transform=ax1.transAxes, color= ps.white)
for w, l in zip(chirps_winner, chirps_loser):
ax.plot([scatterwinner, scatterloser], [w, l], color='r', alpha=0.5, linewidth=0.5)
ax1.plot([scatterwinner, scatterloser], [w, l], color='r', alpha=0.5, linewidth=0.5)
colors1 = ps.red
ps.set_boxplot_color(bplot1, colors1)
colors1 = ps.orange
ps.set_boxplot_color(bplot2, colors1)
ax1.set_ylabel('Chirpscounts [n]')
ax2.scatter(size_diff, chirps_diff, color='r')
ax2.set_xlabel('Size difference [mm]')
ax2.set_ylabel('Chirps difference [n]')
ax3.scatter(freq_diff, chirps_diff, color='r')
ax3.set_xlabel('Frequency difference [Hz]')
ax3.set_yticklabels([])
ax3.set
ax.set_ylabel('Chirpscounts [n]')
plt.savefig('../poster/figs/chirps_winner_loser.pdf')
plt.show()

Binary file not shown.