new poster template
This commit is contained in:
parent
fe41f8f59c
commit
70c4b012be
@ -133,8 +133,10 @@ class ChirpPlotBuffer:
|
||||
data_oi,
|
||||
self.data.raw_rate,
|
||||
self.t0 - 5,
|
||||
[np.min(self.frequency) - 100, np.max(self.frequency) + 200]
|
||||
[np.min(self.frequency) - 300, np.max(self.frequency) + 300]
|
||||
)
|
||||
ax0.set_ylim(np.min(self.frequency) - 100,
|
||||
np.max(self.frequency) + 200)
|
||||
|
||||
for track_id in self.data.ids:
|
||||
|
||||
@ -157,27 +159,35 @@ class ChirpPlotBuffer:
|
||||
zorder=10, color=ps.gblue1)
|
||||
else:
|
||||
ax0.plot(t-self.t0_old, f, lw=lw,
|
||||
zorder=10, color=ps.gray, alpha=0.5)
|
||||
|
||||
ax0.fill_between(
|
||||
np.arange(self.t0, self.t0 + self.dt, 1 / self.data.raw_rate),
|
||||
q50 - self.config.minimal_bandwidth / 2,
|
||||
q50 + self.config.minimal_bandwidth / 2,
|
||||
color=ps.gblue1,
|
||||
lw=1,
|
||||
ls="dashed",
|
||||
alpha=0.5,
|
||||
)
|
||||
zorder=10, color=ps.black)
|
||||
|
||||
# ax0.fill_between(
|
||||
# np.arange(self.t0, self.t0 + self.dt, 1 / self.data.raw_rate),
|
||||
# q50 - self.config.minimal_bandwidth / 2,
|
||||
# q50 + self.config.minimal_bandwidth / 2,
|
||||
# color=ps.gblue1,
|
||||
# lw=1,
|
||||
# ls="dashed",
|
||||
# alpha=0.5,
|
||||
# )
|
||||
|
||||
# ax0.fill_between(
|
||||
# np.arange(self.t0, self.t0 + self.dt, 1 / self.data.raw_rate),
|
||||
# search_lower,
|
||||
# search_upper,
|
||||
# color=ps.gblue2,
|
||||
# lw=1,
|
||||
# ls="dashed",
|
||||
# alpha=0.5,
|
||||
# )
|
||||
|
||||
ax0.axhline(q50 - self.config.minimal_bandwidth / 2,
|
||||
color=ps.gblue1, lw=1, ls="dashed")
|
||||
ax0.axhline(q50 + self.config.minimal_bandwidth / 2,
|
||||
color=ps.gblue1, lw=1, ls="dashed")
|
||||
ax0.axhline(search_lower, color=ps.gblue2, lw=1, ls="dashed")
|
||||
ax0.axhline(search_upper, color=ps.gblue2, lw=1, ls="dashed")
|
||||
|
||||
ax0.fill_between(
|
||||
np.arange(self.t0, self.t0 + self.dt, 1 / self.data.raw_rate),
|
||||
search_lower,
|
||||
search_upper,
|
||||
color=ps.gblue2,
|
||||
lw=1,
|
||||
ls="dashed",
|
||||
alpha=0.5,
|
||||
)
|
||||
# ax0.axhline(q50, spec_times[0], spec_times[-1],
|
||||
# color=ps.gblue1, lw=2, ls="dashed")
|
||||
# ax0.axhline(q50 + self.search_frequency,
|
||||
@ -187,7 +197,11 @@ class ChirpPlotBuffer:
|
||||
if len(chirps) > 0:
|
||||
for chirp in chirps:
|
||||
ax0.scatter(
|
||||
chirp, np.median(self.frequency) + 150, c=ps.black, marker="v"
|
||||
chirp, np.median(self.frequency), c=ps.red, marker=".",
|
||||
edgecolors=ps.red,
|
||||
facecolors=ps.red,
|
||||
zorder=10,
|
||||
s=70,
|
||||
)
|
||||
|
||||
# plot waveform of filtered signal
|
||||
@ -207,25 +221,31 @@ class ChirpPlotBuffer:
|
||||
c=ps.gblue3, lw=lw, label="baseline inst. freq.")
|
||||
|
||||
# plot filtered and rectified envelope
|
||||
ax4.plot(self.time, self.baseline_envelope, c=ps.gblue1, lw=lw)
|
||||
ax4.plot(self.time, self.baseline_envelope *
|
||||
waveform_scaler, c=ps.gblue1, lw=lw)
|
||||
ax4.scatter(
|
||||
(self.time)[self.baseline_peaks],
|
||||
self.baseline_envelope[self.baseline_peaks],
|
||||
(self.baseline_envelope*waveform_scaler)[self.baseline_peaks],
|
||||
edgecolors=ps.red,
|
||||
facecolors=ps.red,
|
||||
zorder=10,
|
||||
marker="o",
|
||||
facecolors="none",
|
||||
marker=".",
|
||||
s=70,
|
||||
# facecolors="none",
|
||||
)
|
||||
|
||||
# plot envelope of search signal
|
||||
ax5.plot(self.time, self.search_envelope, c=ps.gblue2, lw=lw)
|
||||
ax5.plot(self.time, self.search_envelope *
|
||||
waveform_scaler, c=ps.gblue2, lw=lw)
|
||||
ax5.scatter(
|
||||
(self.time)[self.search_peaks],
|
||||
self.search_envelope[self.search_peaks],
|
||||
(self.search_envelope*waveform_scaler)[self.search_peaks],
|
||||
edgecolors=ps.red,
|
||||
facecolors=ps.red,
|
||||
zorder=10,
|
||||
marker="o",
|
||||
facecolors="none",
|
||||
marker=".",
|
||||
s=70,
|
||||
# facecolors="none",
|
||||
)
|
||||
|
||||
# plot filtered instantaneous frequency
|
||||
@ -235,16 +255,20 @@ class ChirpPlotBuffer:
|
||||
self.frequency_time[self.frequency_peaks],
|
||||
self.frequency_filtered[self.frequency_peaks],
|
||||
edgecolors=ps.red,
|
||||
facecolors=ps.red,
|
||||
zorder=10,
|
||||
marker="o",
|
||||
facecolors="none",
|
||||
marker=".",
|
||||
s=70,
|
||||
# facecolors="none",
|
||||
)
|
||||
|
||||
ax0.set_ylabel("frequency [Hz]")
|
||||
ax1.set_ylabel("a.u.")
|
||||
ax2.set_ylabel("a.u.")
|
||||
ax1.set_ylabel(r"$\mu$V")
|
||||
ax2.set_ylabel(r"$\mu$V")
|
||||
ax3.set_ylabel("Hz")
|
||||
ax5.set_ylabel("a.u.")
|
||||
ax4.set_ylabel(r"$\mu$V")
|
||||
ax5.set_ylabel(r"$\mu$V")
|
||||
ax6.set_ylabel("Hz")
|
||||
ax6.set_xlabel("time [s]")
|
||||
|
||||
plt.setp(ax0.get_xticklabels(), visible=False)
|
||||
@ -323,7 +347,7 @@ def plot_spectrogram(
|
||||
aspect="auto",
|
||||
origin="lower",
|
||||
interpolation="gaussian",
|
||||
alpha=0.6,
|
||||
# alpha=0.6,
|
||||
)
|
||||
# axis.use_sticky_edges = False
|
||||
return spec_times
|
||||
@ -628,16 +652,16 @@ def chirpdetection(datapath: str, plot: str, debug: str = 'false') -> None:
|
||||
raw_time = np.arange(data.raw.shape[0]) / data.raw_rate
|
||||
|
||||
# good chirp times for data: 2022-06-02-10_00
|
||||
# window_start_index = (3 * 60 * 60 + 6 * 60 + 43.5 + 5) * data.raw_rate
|
||||
# window_duration_index = 60 * data.raw_rate
|
||||
window_start_index = (3 * 60 * 60 + 6 * 60 + 43.5) * data.raw_rate
|
||||
window_duration_index = 60 * data.raw_rate
|
||||
|
||||
# t0 = 0
|
||||
# dt = data.raw.shape[0]
|
||||
# window_start_seconds = (23495 + ((28336-23495)/3)) * data.raw_rate
|
||||
# window_duration_seconds = (28336 - 23495) * data.raw_rate
|
||||
|
||||
window_start_index = 0
|
||||
window_duration_index = data.raw.shape[0]
|
||||
# window_start_index = 0
|
||||
# window_duration_index = data.raw.shape[0]
|
||||
|
||||
# generate starting points of rolling window
|
||||
window_start_indices = np.arange(
|
||||
@ -1097,4 +1121,4 @@ if __name__ == "__main__":
|
||||
datapath = "../data/2022-06-02-10_00/"
|
||||
# datapath = "/home/weygoldt/Data/uni/efishdata/2016-colombia/fishgrid/2016-04-09-22_25/"
|
||||
# datapath = "/home/weygoldt/Data/uni/chirpdetection/GP2023_chirp_detection/data/mount_data/2020-03-13-10_00/"
|
||||
chirpdetection(datapath, plot="show", debug="false")
|
||||
chirpdetection(datapath, plot="save", debug="false")
|
||||
|
@ -23,16 +23,16 @@ def PlotStyle() -> None:
|
||||
sky = "#89dceb"
|
||||
teal = "#94e2d5"
|
||||
green = "#a6e3a1"
|
||||
yellow = "#f9e2af"
|
||||
orange = "#fab387"
|
||||
maroon = "#eba0ac"
|
||||
red = "#f38ba8"
|
||||
purple = "#cba6f7"
|
||||
pink = "#f5c2e7"
|
||||
yellow = "#f9d67f"
|
||||
orange = "#faa472"
|
||||
maroon = "#eb8486"
|
||||
red = "#f37588"
|
||||
purple = "#d89bf7"
|
||||
pink = "#f59edb"
|
||||
lavender = "#b4befe"
|
||||
gblue1 = "#8cb8ff"
|
||||
gblue2 = "#7cdcdc"
|
||||
gblue3 = "#82e896"
|
||||
gblue1 = "#89b4fa"
|
||||
gblue2 = "#89dceb"
|
||||
gblue3 = "#a6e3a1"
|
||||
|
||||
@classmethod
|
||||
def lims(cls, track1, track2):
|
||||
@ -108,6 +108,9 @@ def PlotStyle() -> None:
|
||||
@classmethod
|
||||
def set_boxplot_color(cls, bp, color):
|
||||
plt.setp(bp["boxes"], color=color)
|
||||
plt.setp(bp["whiskers"], color=color)
|
||||
plt.setp(bp["caps"], color=color)
|
||||
plt.setp(bp["medians"], color=color)
|
||||
|
||||
@classmethod
|
||||
def label_subplots(cls, labels, axes, fig):
|
||||
@ -226,7 +229,7 @@ def PlotStyle() -> None:
|
||||
plt.rc("legend", fontsize=SMALL_SIZE) # legend fontsize
|
||||
plt.rc("figure", titlesize=BIGGER_SIZE) # fontsize of the figure title
|
||||
|
||||
plt.rcParams["image.cmap"] = 'cmo.haline'
|
||||
plt.rcParams["image.cmap"] = "cmo.haline"
|
||||
plt.rcParams["axes.xmargin"] = 0.05
|
||||
plt.rcParams["axes.ymargin"] = 0.1
|
||||
plt.rcParams["axes.titlelocation"] = "left"
|
||||
@ -247,42 +250,44 @@ def PlotStyle() -> None:
|
||||
|
||||
# dark mode modifications
|
||||
plt.rcParams["boxplot.flierprops.color"] = white
|
||||
plt.rcParams["boxplot.flierprops.markeredgecolor"] = white
|
||||
plt.rcParams["boxplot.flierprops.markeredgecolor"] = gray
|
||||
plt.rcParams["boxplot.boxprops.color"] = gray
|
||||
plt.rcParams["boxplot.whiskerprops.color"] = white
|
||||
plt.rcParams["boxplot.capprops.color"] = white
|
||||
plt.rcParams["boxplot.medianprops.color"] = white
|
||||
plt.rcParams["boxplot.whiskerprops.color"] = gray
|
||||
plt.rcParams["boxplot.capprops.color"] = gray
|
||||
plt.rcParams["boxplot.medianprops.color"] = gray
|
||||
plt.rcParams["text.color"] = white
|
||||
plt.rcParams["axes.facecolor"] = black # axes background color
|
||||
plt.rcParams["axes.edgecolor"] = gray # axes edge color
|
||||
# plt.rcParams["axes.grid"] = True # display grid or not
|
||||
# plt.rcParams["axes.grid.axis"] = "y" # which axis the grid is applied to
|
||||
plt.rcParams["axes.labelcolor"] = white
|
||||
plt.rcParams["axes.axisbelow"] = True # draw axis gridlines and ticks:
|
||||
plt.rcParams["axes.axisbelow"] = True # draw axis gridlines and ticks:
|
||||
plt.rcParams["axes.spines.left"] = True # display axis spines
|
||||
plt.rcParams["axes.spines.bottom"] = True
|
||||
plt.rcParams["axes.spines.top"] = False
|
||||
plt.rcParams["axes.spines.right"] = False
|
||||
plt.rcParams["axes.prop_cycle"] = cycler(
|
||||
'color', [
|
||||
'#b4befe',
|
||||
'#89b4fa',
|
||||
'#74c7ec',
|
||||
'#89dceb',
|
||||
'#94e2d5',
|
||||
'#a6e3a1',
|
||||
'#f9e2af',
|
||||
'#fab387',
|
||||
'#eba0ac',
|
||||
'#f38ba8',
|
||||
'#cba6f7',
|
||||
'#f5c2e7',
|
||||
])
|
||||
"color",
|
||||
[
|
||||
"#b4befe",
|
||||
"#89b4fa",
|
||||
"#74c7ec",
|
||||
"#89dceb",
|
||||
"#94e2d5",
|
||||
"#a6e3a1",
|
||||
"#f9e2af",
|
||||
"#fab387",
|
||||
"#eba0ac",
|
||||
"#f38ba8",
|
||||
"#cba6f7",
|
||||
"#f5c2e7",
|
||||
],
|
||||
)
|
||||
plt.rcParams["xtick.color"] = gray # color of the ticks
|
||||
plt.rcParams["ytick.color"] = gray # color of the ticks
|
||||
plt.rcParams["grid.color"] = dark_gray # grid color
|
||||
plt.rcParams["figure.facecolor"] = black # figure face color
|
||||
plt.rcParams["figure.edgecolor"] = black # figure edge color
|
||||
plt.rcParams["figure.facecolor"] = black # figure face color
|
||||
plt.rcParams["figure.edgecolor"] = black # figure edge color
|
||||
plt.rcParams["savefig.facecolor"] = black # figure face color when saving
|
||||
|
||||
return style
|
||||
@ -292,12 +297,11 @@ if __name__ == "__main__":
|
||||
|
||||
s = PlotStyle()
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.cbook as cbook
|
||||
import matplotlib.cm as cm
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.cbook as cbook
|
||||
from matplotlib.path import Path
|
||||
from matplotlib.patches import PathPatch
|
||||
from matplotlib.path import Path
|
||||
|
||||
# Fixing random state for reproducibility
|
||||
np.random.seed(19680801)
|
||||
@ -305,14 +309,20 @@ if __name__ == "__main__":
|
||||
delta = 0.025
|
||||
x = y = np.arange(-3.0, 3.0, delta)
|
||||
X, Y = np.meshgrid(x, y)
|
||||
Z1 = np.exp(-X**2 - Y**2)
|
||||
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
|
||||
Z1 = np.exp(-(X**2) - Y**2)
|
||||
Z2 = np.exp(-((X - 1) ** 2) - (Y - 1) ** 2)
|
||||
Z = (Z1 - Z2) * 2
|
||||
|
||||
fig1, ax = plt.subplots()
|
||||
im = ax.imshow(Z, interpolation='bilinear', cmap=cm.RdYlGn,
|
||||
origin='lower', extent=[-3, 3, -3, 3],
|
||||
vmax=abs(Z).max(), vmin=-abs(Z).max())
|
||||
im = ax.imshow(
|
||||
Z,
|
||||
interpolation="bilinear",
|
||||
cmap=cm.RdYlGn,
|
||||
origin="lower",
|
||||
extent=[-3, 3, -3, 3],
|
||||
vmax=abs(Z).max(),
|
||||
vmin=-abs(Z).max(),
|
||||
)
|
||||
|
||||
plt.show()
|
||||
|
||||
@ -325,22 +335,21 @@ if __name__ == "__main__":
|
||||
all_data = [np.random.normal(0, std, 100) for std in range(6, 10)]
|
||||
|
||||
# plot violin plot
|
||||
axs[0].violinplot(all_data,
|
||||
showmeans=False,
|
||||
showmedians=True)
|
||||
axs[0].set_title('Violin plot')
|
||||
axs[0].violinplot(all_data, showmeans=False, showmedians=True)
|
||||
axs[0].set_title("Violin plot")
|
||||
|
||||
# plot box plot
|
||||
axs[1].boxplot(all_data)
|
||||
axs[1].set_title('Box plot')
|
||||
axs[1].set_title("Box plot")
|
||||
|
||||
# adding horizontal grid lines
|
||||
for ax in axs:
|
||||
ax.yaxis.grid(True)
|
||||
ax.set_xticks([y + 1 for y in range(len(all_data))],
|
||||
labels=['x1', 'x2', 'x3', 'x4'])
|
||||
ax.set_xlabel('Four separate samples')
|
||||
ax.set_ylabel('Observed values')
|
||||
ax.set_xticks(
|
||||
[y + 1 for y in range(len(all_data))], labels=["x1", "x2", "x3", "x4"]
|
||||
)
|
||||
ax.set_xlabel("Four separate samples")
|
||||
ax.set_ylabel("Observed values")
|
||||
|
||||
plt.show()
|
||||
|
||||
@ -352,24 +361,42 @@ if __name__ == "__main__":
|
||||
theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False)
|
||||
radii = 10 * np.random.rand(N)
|
||||
width = np.pi / 4 * np.random.rand(N)
|
||||
colors = cmo.cm.haline(radii / 10.)
|
||||
colors = cmo.cm.haline(radii / 10.0)
|
||||
|
||||
ax = plt.subplot(projection='polar')
|
||||
ax = plt.subplot(projection="polar")
|
||||
ax.bar(theta, radii, width=width, bottom=0.0, color=colors, alpha=0.5)
|
||||
|
||||
plt.show()
|
||||
|
||||
methods = [None, 'none', 'nearest', 'bilinear', 'bicubic', 'spline16',
|
||||
'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
|
||||
'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos']
|
||||
methods = [
|
||||
None,
|
||||
"none",
|
||||
"nearest",
|
||||
"bilinear",
|
||||
"bicubic",
|
||||
"spline16",
|
||||
"spline36",
|
||||
"hanning",
|
||||
"hamming",
|
||||
"hermite",
|
||||
"kaiser",
|
||||
"quadric",
|
||||
"catrom",
|
||||
"gaussian",
|
||||
"bessel",
|
||||
"mitchell",
|
||||
"sinc",
|
||||
"lanczos",
|
||||
]
|
||||
|
||||
# Fixing random state for reproducibility
|
||||
np.random.seed(19680801)
|
||||
|
||||
grid = np.random.rand(4, 4)
|
||||
|
||||
fig, axs = plt.subplots(nrows=3, ncols=6, figsize=(9, 6),
|
||||
subplot_kw={'xticks': [], 'yticks': []})
|
||||
fig, axs = plt.subplots(
|
||||
nrows=3, ncols=6, figsize=(9, 6), subplot_kw={"xticks": [], "yticks": []}
|
||||
)
|
||||
|
||||
for ax, interp_method in zip(axs.flat, methods):
|
||||
ax.imshow(grid, interpolation=interp_method)
|
||||
|
@ -41,9 +41,9 @@ def main():
|
||||
freqtime2, freq2 = instantaneous_frequency(
|
||||
filtered2, data.raw_rate, smoothing_window=3)
|
||||
|
||||
ax1.plot(freqtime1*timescaler, freq1, color=ps.gblue1,
|
||||
ax1.plot(freqtime1*timescaler, freq1, color=ps.red,
|
||||
lw=2, label=f"fish 1, {np.median(freq1):.0f} Hz")
|
||||
ax1.plot(freqtime2*timescaler, freq2, color=ps.gblue3,
|
||||
ax1.plot(freqtime2*timescaler, freq2, color=ps.orange,
|
||||
lw=2, label=f"fish 2, {np.median(freq2):.0f} Hz")
|
||||
ax1.legend(bbox_to_anchor=(0, 1.02, 1, 0.2), loc="lower center",
|
||||
mode="normal", borderaxespad=0, ncol=2)
|
||||
|
BIN
poster/figs/algorithm.pdf
Normal file
BIN
poster/figs/algorithm.pdf
Normal file
Binary file not shown.
BIN
poster/figs/introplot.pdf
Normal file
BIN
poster/figs/introplot.pdf
Normal file
Binary file not shown.
BIN
poster/main.pdf
BIN
poster/main.pdf
Binary file not shown.
@ -7,7 +7,7 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val
|
||||
\begin{document}
|
||||
|
||||
\renewcommand{\baselinestretch}{1}
|
||||
\title{\parbox{1500pt}{Poster}}
|
||||
\title{\parbox{1500pt}{Detection of transient communication signals in weakly electric fish}}
|
||||
\author{Sina Prause, Alexander Wendt, and Patrick Weygoldt}
|
||||
\institute{Supervised by Till Raab \& Jan Benda, Neuroethology Lab, University of Tuebingen}
|
||||
\usetitlestyle[]{sampletitle}
|
||||
@ -21,17 +21,15 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val
|
||||
sender identification of freely interacting individuals impossible.
|
||||
This profoundly limits our current understanding of chirps to experiments
|
||||
with single - or physically separated - individuals.
|
||||
\vspace{0.6cm}
|
||||
\begin{tikzfigure}[]
|
||||
\label{griddrawing}
|
||||
\includegraphics[width=0.5\linewidth]{example-image-a}
|
||||
\end{tikzfigure}
|
||||
% \begin{tikzfigure}[]
|
||||
% \label{griddrawing}
|
||||
% \includegraphics[width=1\linewidth]{figs/introplot}
|
||||
% \end{tikzfigure}
|
||||
}
|
||||
|
||||
\myblock[TranspBlock]{Chirp detection}{
|
||||
\begin{tikzfigure}[]
|
||||
\label{fig:example_a}
|
||||
\includegraphics[width=0.5\linewidth]{example-image-a}
|
||||
\includegraphics[width=1\linewidth]{figs/algorithm}
|
||||
\end{tikzfigure}
|
||||
\vspace{0cm}
|
||||
}
|
||||
@ -67,7 +65,7 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val
|
||||
\vspace{-1cm}
|
||||
}
|
||||
|
||||
\myblock[TranspBlock]{Conclusion}{
|
||||
\myblock[GrayBlock]{Conclusion}{
|
||||
\begin{itemize}
|
||||
\setlength\itemsep{0.5em}
|
||||
\item Our analysis is the first to indicate that \textit{A. leptorhynchus} uses long, diffuse and synchronized EOD$f$ signals to communicate in addition to chirps and rises.
|
||||
|
@ -1,9 +1,9 @@
|
||||
\tikzposterlatexaffectionproofoff
|
||||
\usetheme{Default}
|
||||
|
||||
\definecolor{text}{HTML}{ffffff}
|
||||
\definecolor{background}{HTML}{080808}
|
||||
\definecolor{boxes}{HTML}{1E1E1E}
|
||||
\definecolor{text}{HTML}{e0e4f7}
|
||||
\definecolor{background}{HTML}{111116}
|
||||
\definecolor{boxes}{HTML}{2a2a32}
|
||||
\definecolor{unired}{HTML}{a51e37}
|
||||
|
||||
\colorlet{blocktitlefgcolor}{text}
|
||||
|
Loading…
Reference in New Issue
Block a user