adding mask for bodylength

This commit is contained in:
wendtalexander 2023-01-23 14:51:36 +01:00
parent 9bfbe8df5e
commit c6facd6f0c

View File

@ -0,0 +1,141 @@
import numpy as np
import os
import numpy as np
import matplotlib.pyplot as plt
from thunderfish.powerspectrum import decibel
from IPython import embed
from pandas import read_csv
from modules.logger import makeLogger
from modules.plotstyle import PlotStyle
ps = PlotStyle()
logger = makeLogger(__name__)
class Behavior:
"""Load behavior data from csv file as class attributes
Attributes
----------
behavior: 0: chasing onset, 1: chasing offset, 2: physical contact
behavior_type:
behavioral_category:
comment_start:
comment_stop:
dataframe: pandas dataframe with all the data
duration_s:
media_file:
observation_date:
observation_id:
start_s: start time of the event in seconds
stop_s: stop time of the event in seconds
total_length:
"""
def __init__(self, folder_path: str) -> None:
LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True)
csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0]
logger.info(f'CSV file: {csv_filename}')
self.dataframe = read_csv(os.path.join(folder_path, csv_filename))
self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True)
self.chirps_ids = np.load(os.path.join(folder_path, 'chirps_ids.npy'), allow_pickle=True)
self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True)
self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True)
self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True)
self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True)
self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True)
for k, key in enumerate(self.dataframe.keys()):
key = key.lower()
if ' ' in key:
key = key.replace(' ', '_')
if '(' in key:
key = key.replace('(', '')
key = key.replace(')', '')
setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]]))
last_LED_t_BORIS = LED_on_time_BORIS[-1]
real_time_range = self.time[-1] - self.time[0]
factor = 1.034141
shift = last_LED_t_BORIS - real_time_range * factor
self.start_s = (self.start_s - shift) / factor
self.stop_s = (self.stop_s - shift) / factor
def correct_chasing_events(
category: np.ndarray,
timestamps: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
onset_ids = np.arange(
len(category))[category == 0]
offset_ids = np.arange(
len(category))[category == 1]
# Check whether on- or offset is longer and calculate length difference
if len(onset_ids) > len(offset_ids):
len_diff = len(onset_ids) - len(offset_ids)
longer_array = onset_ids
shorter_array = offset_ids
logger.info(f'Onsets are greater than offsets by {len_diff}')
elif len(onset_ids) < len(offset_ids):
len_diff = len(offset_ids) - len(onset_ids)
longer_array = offset_ids
shorter_array = onset_ids
logger.info(f'Offsets are greater than offsets by {len_diff}')
elif len(onset_ids) == len(offset_ids):
logger.info('Chasing events are equal')
return category, timestamps
# Correct the wrong chasing events; delete double events
wrong_ids = []
for i in range(len(longer_array)-(len_diff+1)):
if (shorter_array[i] > longer_array[i]) & (shorter_array[i] < longer_array[i+1]):
pass
else:
wrong_ids.append(longer_array[i])
longer_array = np.delete(longer_array, i)
category = np.delete(
category, wrong_ids)
timestamps = np.delete(
timestamps, wrong_ids)
return category, timestamps
def main(datapath: str):
# behabvior is pandas dataframe with all the data
bh = Behavior(datapath)
# chirps are not sorted in time (presumably due to prior groupings)
# get and sort chirps and corresponding fish_ids of the chirps
chirps = bh.chirps[np.argsort(bh.chirps)]
chirps_fish_ids = bh.chirps_ids[np.argsort(bh.chirps)]
category = bh.behavior
timestamps = bh.start_s
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
# Get rid of tracking faults (two onsets or two offsets after another)
category, timestamps = correct_chasing_events(category, timestamps)
pass
if __name__ == '__main__':
# Path to the data
datapath = '../data/mount_data/2020-05-13-10_00/'
main(datapath)