From c6facd6f0cfc5421c2b8a4c0e67c782342fd52f7 Mon Sep 17 00:00:00 2001 From: wendtalexander Date: Mon, 23 Jan 2023 14:51:36 +0100 Subject: [PATCH] adding mask for bodylength --- code/plot_chirp_bodylegth.py | 141 +++++++++++++++++++++++++++++++++++ 1 file changed, 141 insertions(+) create mode 100644 code/plot_chirp_bodylegth.py diff --git a/code/plot_chirp_bodylegth.py b/code/plot_chirp_bodylegth.py new file mode 100644 index 0000000..e088da8 --- /dev/null +++ b/code/plot_chirp_bodylegth.py @@ -0,0 +1,141 @@ +import numpy as np + +import os + +import numpy as np +import matplotlib.pyplot as plt +from thunderfish.powerspectrum import decibel + +from IPython import embed +from pandas import read_csv +from modules.logger import makeLogger +from modules.plotstyle import PlotStyle + +ps = PlotStyle() + +logger = makeLogger(__name__) + + +class Behavior: + """Load behavior data from csv file as class attributes + Attributes + ---------- + behavior: 0: chasing onset, 1: chasing offset, 2: physical contact + behavior_type: + behavioral_category: + comment_start: + comment_stop: + dataframe: pandas dataframe with all the data + duration_s: + media_file: + observation_date: + observation_id: + start_s: start time of the event in seconds + stop_s: stop time of the event in seconds + total_length: + """ + + def __init__(self, folder_path: str) -> None: + + + LED_on_time_BORIS = np.load(os.path.join(folder_path, 'LED_on_time.npy'), allow_pickle=True) + + csv_filename = [f for f in os.listdir(folder_path) if f.endswith('.csv')][0] + logger.info(f'CSV file: {csv_filename}') + self.dataframe = read_csv(os.path.join(folder_path, csv_filename)) + + self.chirps = np.load(os.path.join(folder_path, 'chirps.npy'), allow_pickle=True) + self.chirps_ids = np.load(os.path.join(folder_path, 'chirps_ids.npy'), allow_pickle=True) + + self.ident = np.load(os.path.join(folder_path, 'ident_v.npy'), allow_pickle=True) + self.idx = np.load(os.path.join(folder_path, 'idx_v.npy'), allow_pickle=True) + self.freq = np.load(os.path.join(folder_path, 'fund_v.npy'), allow_pickle=True) + self.time = np.load(os.path.join(folder_path, "times.npy"), allow_pickle=True) + self.spec = np.load(os.path.join(folder_path, "spec.npy"), allow_pickle=True) + + for k, key in enumerate(self.dataframe.keys()): + key = key.lower() + if ' ' in key: + key = key.replace(' ', '_') + if '(' in key: + key = key.replace('(', '') + key = key.replace(')', '') + setattr(self, key, np.array(self.dataframe[self.dataframe.keys()[k]])) + + last_LED_t_BORIS = LED_on_time_BORIS[-1] + real_time_range = self.time[-1] - self.time[0] + factor = 1.034141 + shift = last_LED_t_BORIS - real_time_range * factor + self.start_s = (self.start_s - shift) / factor + self.stop_s = (self.stop_s - shift) / factor + + +def correct_chasing_events( + category: np.ndarray, + timestamps: np.ndarray + ) -> tuple[np.ndarray, np.ndarray]: + + onset_ids = np.arange( + len(category))[category == 0] + offset_ids = np.arange( + len(category))[category == 1] + + # Check whether on- or offset is longer and calculate length difference + if len(onset_ids) > len(offset_ids): + len_diff = len(onset_ids) - len(offset_ids) + longer_array = onset_ids + shorter_array = offset_ids + logger.info(f'Onsets are greater than offsets by {len_diff}') + elif len(onset_ids) < len(offset_ids): + len_diff = len(offset_ids) - len(onset_ids) + longer_array = offset_ids + shorter_array = onset_ids + logger.info(f'Offsets are greater than offsets by {len_diff}') + elif len(onset_ids) == len(offset_ids): + logger.info('Chasing events are equal') + return category, timestamps + + + # Correct the wrong chasing events; delete double events + wrong_ids = [] + for i in range(len(longer_array)-(len_diff+1)): + if (shorter_array[i] > longer_array[i]) & (shorter_array[i] < longer_array[i+1]): + pass + else: + wrong_ids.append(longer_array[i]) + longer_array = np.delete(longer_array, i) + + category = np.delete( + category, wrong_ids) + timestamps = np.delete( + timestamps, wrong_ids) + return category, timestamps + + + +def main(datapath: str): + # behabvior is pandas dataframe with all the data + bh = Behavior(datapath) + # chirps are not sorted in time (presumably due to prior groupings) + # get and sort chirps and corresponding fish_ids of the chirps + chirps = bh.chirps[np.argsort(bh.chirps)] + chirps_fish_ids = bh.chirps_ids[np.argsort(bh.chirps)] + category = bh.behavior + timestamps = bh.start_s + # Correct for doubles in chasing on- and offsets to get the right on-/offset pairs + # Get rid of tracking faults (two onsets or two offsets after another) + category, timestamps = correct_chasing_events(category, timestamps) + + + + + pass + + + + +if __name__ == '__main__': + + # Path to the data + datapath = '../data/mount_data/2020-05-13-10_00/' + main(datapath) \ No newline at end of file