resolving master merge
This commit is contained in:
commit
bbff7fd80c
@ -173,13 +173,15 @@ def main(datapath: str):
|
||||
|
||||
size_winners = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_winner = size_rows[size_rows['fish']== winner_fish1][l].values[0]
|
||||
size_winner = size_rows[size_rows['fish']
|
||||
== winner_fish1][l].values[0]
|
||||
size_winners.append(size_winner)
|
||||
mean_size_winner = np.nanmean(size_winners)
|
||||
|
||||
size_losers = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_loser = size_rows[size_rows['fish']== winner_fish2][l].values[0]
|
||||
size_loser = size_rows[size_rows['fish']
|
||||
== winner_fish2][l].values[0]
|
||||
size_losers.append(size_loser)
|
||||
mean_size_loser = np.nanmean(size_losers)
|
||||
|
||||
@ -191,13 +193,15 @@ def main(datapath: str):
|
||||
|
||||
size_winners = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_winner = size_rows[size_rows['fish']== winner_fish2][l].values[0]
|
||||
size_winner = size_rows[size_rows['fish']
|
||||
== winner_fish2][l].values[0]
|
||||
size_winners.append(size_winner)
|
||||
mean_size_winner = np.nanmean(size_winners)
|
||||
|
||||
size_losers = []
|
||||
for l in ['l1', 'l2', 'l3']:
|
||||
size_loser = size_rows[size_rows['fish']== winner_fish1][l].values[0]
|
||||
size_loser = size_rows[size_rows['fish']
|
||||
== winner_fish1][l].values[0]
|
||||
size_losers.append(size_loser)
|
||||
mean_size_loser = np.nanmean(size_losers)
|
||||
|
||||
@ -219,7 +223,8 @@ def main(datapath: str):
|
||||
size_chirps_diffs.append(chirp_winner - chirp_loser)
|
||||
freq_diffs.append(freq_winner - freq_loser)
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5))
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(22*ps.cm, 12*ps.cm), width_ratios=[1.5, 1,1])
|
||||
plt.subplots_adjust(left=0.098, right=0.945, top=0.94, wspace=0.343)
|
||||
scatterwinner = 1.15
|
||||
scatterloser = 1.85
|
||||
chirps_winner = np.asarray(chirps_winner)[~np.isnan(chirps_winner)]
|
||||
@ -234,24 +239,24 @@ def main(datapath: str):
|
||||
ax1.scatter(np.ones(len(chirps_loser)) *
|
||||
scatterloser, chirps_loser, color='r')
|
||||
ax1.set_xticklabels(['winner', 'loser'])
|
||||
ax1.text(0.9, 0.9, f'n = {len(chirps_winner)}',
|
||||
ax1.text(0.1, 0.9, f'n = {len(chirps_winner)}',
|
||||
transform=ax1.transAxes, color=ps.white)
|
||||
|
||||
for w, l in zip(chirps_winner, chirps_loser):
|
||||
ax1.plot([scatterwinner, scatterloser], [w, l],
|
||||
color='r', alpha=0.5, linewidth=0.5)
|
||||
ax1.set_ylabel('Chirps [n]', color=ps.white)
|
||||
|
||||
colors1 = ps.red
|
||||
ps.set_boxplot_color(bplot1, colors1)
|
||||
colors1 = ps.orange
|
||||
ps.set_boxplot_color(bplot2, colors1)
|
||||
ax1.set_ylabel('Chirpscounts [n]')
|
||||
embed()
|
||||
ax2.scatter(size_diffs, size_chirps_diffs, color='r')
|
||||
ax2.set_xlabel('Size difference [mm]')
|
||||
ax2.set_ylabel('Chirps difference [n]')
|
||||
|
||||
ax3.scatter(freq_diffs, freq_chirps_diffs, color='r')
|
||||
ax3.scatter(freq_diffs, size_chirps_diffs, color='r')
|
||||
# ax3.scatter(freq_diffs, freq_chirps_diffs, color='r')
|
||||
ax3.set_xlabel('Frequency difference [Hz]')
|
||||
ax3.set_yticklabels([])
|
||||
ax3.set
|
||||
|
211
code/plot_chirp_size.py
Normal file
211
code/plot_chirp_size.py
Normal file
@ -0,0 +1,211 @@
|
||||
import numpy as np
|
||||
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from thunderfish.powerspectrum import decibel
|
||||
|
||||
from IPython import embed
|
||||
from pandas import read_csv
|
||||
from modules.logger import makeLogger
|
||||
from modules.plotstyle import PlotStyle
|
||||
from modules.behaviour_handling import Behavior, correct_chasing_events
|
||||
|
||||
ps = PlotStyle()
|
||||
|
||||
logger = makeLogger(__name__)
|
||||
|
||||
|
||||
def get_chirp_winner_loser(folder_name, Behavior, order_meta_df):
|
||||
|
||||
foldername = folder_name.split('/')[-2]
|
||||
winner_row = order_meta_df[order_meta_df['recording'] == foldername]
|
||||
winner = winner_row['winner'].values[0].astype(int)
|
||||
winner_fish1 = winner_row['fish1'].values[0].astype(int)
|
||||
winner_fish2 = winner_row['fish2'].values[0].astype(int)
|
||||
|
||||
if winner > 0:
|
||||
if winner == winner_fish1:
|
||||
winner_fish_id = winner_row['rec_id1'].values[0]
|
||||
loser_fish_id = winner_row['rec_id2'].values[0]
|
||||
|
||||
elif winner == winner_fish2:
|
||||
winner_fish_id = winner_row['rec_id2'].values[0]
|
||||
loser_fish_id = winner_row['rec_id1'].values[0]
|
||||
|
||||
chirp_winner = len(
|
||||
Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
|
||||
chirp_loser = len(
|
||||
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
||||
|
||||
return chirp_winner, chirp_loser
|
||||
else:
|
||||
return np.nan, np.nan
|
||||
|
||||
|
||||
def get_chirp_size(folder_name, Behavior, order_meta_df, id_meta_df):
|
||||
|
||||
foldername = folder_name.split('/')[-2]
|
||||
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
|
||||
fish1 = folder_row['fish1'].values[0].astype(int)
|
||||
fish2 = folder_row['fish2'].values[0].astype(int)
|
||||
|
||||
groub = folder_row['group'].values[0].astype(int)
|
||||
size_fish1_row = id_meta_df[(id_meta_df['group'] == groub) & (
|
||||
id_meta_df['fish'] == fish1)]
|
||||
size_fish2_row = id_meta_df[(id_meta_df['group'] == groub) & (
|
||||
id_meta_df['fish'] == fish2)]
|
||||
|
||||
size_winners = [size_fish1_row[col].values[0]
|
||||
for col in ['l1', 'l2', 'l3']]
|
||||
mean_size_winner = np.nanmean(size_winners)
|
||||
|
||||
size_losers = [size_fish2_row[col].values[0] for col in ['l1', 'l2', 'l3']]
|
||||
mean_size_loser = np.nanmean(size_losers)
|
||||
|
||||
if mean_size_winner > mean_size_loser:
|
||||
size_diff_bigger = mean_size_winner - mean_size_loser
|
||||
size_diff_smaller = mean_size_loser - mean_size_winner
|
||||
winner_fish_id = folder_row['rec_id1'].values[0]
|
||||
loser_fish_id = folder_row['rec_id2'].values[0]
|
||||
|
||||
elif mean_size_winner < mean_size_loser:
|
||||
size_diff_bigger = mean_size_loser - mean_size_winner
|
||||
size_diff_smaller = mean_size_winner - mean_size_loser
|
||||
winner_fish_id = folder_row['rec_id2'].values[0]
|
||||
loser_fish_id = folder_row['rec_id1'].values[0]
|
||||
else:
|
||||
size_diff = np.nan
|
||||
winner_fish_id = np.nan
|
||||
loser_fish_id = np.nan
|
||||
|
||||
chirp_winner = len(
|
||||
Behavior.chirps[Behavior.chirps_ids == winner_fish_id])
|
||||
chirp_loser = len(
|
||||
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
||||
|
||||
return size_diff_bigger, chirp_winner, size_diff_smaller, chirp_loser
|
||||
|
||||
|
||||
def get_chirp_freq(folder_name, Behavior, order_meta_df):
|
||||
|
||||
foldername = folder_name.split('/')[-2]
|
||||
folder_row = order_meta_df[order_meta_df['recording'] == foldername]
|
||||
fish1 = folder_row['rec_id1'].values[0].astype(int)
|
||||
fish2 = folder_row['rec_id2'].values[0].astype(int)
|
||||
chirp_freq_fish1 = np.nanmedian(
|
||||
Behavior.freq[Behavior.ident == fish1])
|
||||
chirp_freq_fish2 = np.nanmedian(
|
||||
Behavior.freq[Behavior.ident == fish2])
|
||||
|
||||
if chirp_freq_fish1 > chirp_freq_fish2:
|
||||
freq_diff = chirp_freq_fish1 - chirp_freq_fish2
|
||||
winner_fish_id = folder_row['rec_id1'].values[0]
|
||||
loser_fish_id = folder_row['rec_id2'].values[0]
|
||||
|
||||
elif chirp_freq_fish1 < chirp_freq_fish2:
|
||||
freq_diff = chirp_freq_fish2 - chirp_freq_fish1
|
||||
winner_fish_id = folder_row['rec_id2'].values[0]
|
||||
loser_fish_id = folder_row['rec_id1'].values[0]
|
||||
|
||||
chirp_diff = len(Behavior.chirps[Behavior.chirps_ids == winner_fish_id]) - len(
|
||||
Behavior.chirps[Behavior.chirps_ids == loser_fish_id])
|
||||
|
||||
return freq_diff, chirp_diff
|
||||
|
||||
|
||||
def main(datapath: str):
|
||||
|
||||
foldernames = [
|
||||
datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
||||
path_order_meta = (
|
||||
'/').join(foldernames[0].split('/')[:-2]) + '/order_meta.csv'
|
||||
order_meta_df = read_csv(path_order_meta)
|
||||
order_meta_df['recording'] = order_meta_df['recording'].str[1:-1]
|
||||
path_id_meta = (
|
||||
'/').join(foldernames[0].split('/')[:-2]) + '/id_meta.csv'
|
||||
id_meta_df = read_csv(path_id_meta)
|
||||
|
||||
chirps_winner = []
|
||||
size_diffs = []
|
||||
size_chirps_diffs = []
|
||||
chirps_loser = []
|
||||
freq_diffs = []
|
||||
freq_chirps_diffs = []
|
||||
|
||||
for foldername in foldernames:
|
||||
# behabvior is pandas dataframe with all the data
|
||||
if foldername == '../data/mount_data/2020-05-12-10_00/':
|
||||
continue
|
||||
bh = Behavior(foldername)
|
||||
# chirps are not sorted in time (presumably due to prior groupings)
|
||||
# get and sort chirps and corresponding fish_ids of the chirps
|
||||
category = bh.behavior
|
||||
timestamps = bh.start_s
|
||||
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
|
||||
# Get rid of tracking faults (two onsets or two offsets after another)
|
||||
category, timestamps = correct_chasing_events(category, timestamps)
|
||||
|
||||
winner_chirp, loser_chirp = get_chirp_winner_loser(
|
||||
foldername, bh, order_meta_df)
|
||||
chirps_winner.append(winner_chirp)
|
||||
chirps_loser.append(loser_chirp)
|
||||
size_diff, chirp_diff = get_chirp_size(
|
||||
foldername, bh, order_meta_df, id_meta_df)
|
||||
size_diffs.append(size_diff)
|
||||
size_chirps_diffs.append(chirp_diff)
|
||||
|
||||
freq_diff, freq_chirps_diff = get_chirp_freq(
|
||||
foldername, bh, order_meta_df)
|
||||
freq_diffs.append(freq_diff)
|
||||
freq_chirps_diffs.append(freq_chirps_diff)
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(22*ps.cm, 12*ps.cm), width_ratios=[1.5, 1,1])
|
||||
plt.subplots_adjust(left=0.098, right=0.945, top=0.94, wspace=0.343)
|
||||
scatterwinner = 1.15
|
||||
scatterloser = 1.85
|
||||
chirps_winner = np.asarray(chirps_winner)[~np.isnan(chirps_winner)]
|
||||
chirps_loser = np.asarray(chirps_loser)[~np.isnan(chirps_loser)]
|
||||
|
||||
bplot1 = ax1.boxplot(chirps_winner, positions=[
|
||||
1], showfliers=False, patch_artist=True)
|
||||
bplot2 = ax1.boxplot(chirps_loser, positions=[
|
||||
2], showfliers=False, patch_artist=True)
|
||||
ax1.scatter(np.ones(len(chirps_winner)) *
|
||||
scatterwinner, chirps_winner, color='r')
|
||||
ax1.scatter(np.ones(len(chirps_loser)) *
|
||||
scatterloser, chirps_loser, color='r')
|
||||
ax1.set_xticklabels(['winner', 'loser'])
|
||||
ax1.text(0.1, 0.9, f'n = {len(chirps_winner)}',
|
||||
transform=ax1.transAxes, color=ps.white)
|
||||
|
||||
for w, l in zip(chirps_winner, chirps_loser):
|
||||
ax1.plot([scatterwinner, scatterloser], [w, l],
|
||||
color='r', alpha=0.5, linewidth=0.5)
|
||||
ax1.set_ylabel('Chirps [n]', color=ps.white)
|
||||
|
||||
colors1 = ps.red
|
||||
ps.set_boxplot_color(bplot1, colors1)
|
||||
colors1 = ps.orange
|
||||
ps.set_boxplot_color(bplot2, colors1)
|
||||
ax2.scatter(size_diffs, size_chirps_diffs, color='r')
|
||||
ax2.set_xlabel('Size difference [mm]')
|
||||
ax2.set_ylabel('Chirps difference [n]')
|
||||
|
||||
#ax3.scatter(freq_diffs, size_chirps_diffs, color='r')
|
||||
# ax3.scatter(freq_diffs, freq_chirps_diffs, color='r')
|
||||
ax3.set_xlabel('Frequency difference [Hz]')
|
||||
ax3.set_yticklabels([])
|
||||
ax3.set
|
||||
|
||||
#plt.savefig('../poster/figs/chirps_winner_loser.pdf')
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Path to the data
|
||||
datapath = '../data/mount_data/'
|
||||
|
||||
main(datapath)
|
@ -20,13 +20,13 @@ logger = makeLogger(__name__)
|
||||
def main(datapath: str):
|
||||
|
||||
foldernames = [datapath + x + '/' for x in os.listdir(datapath) if os.path.isdir(datapath+x)]
|
||||
#for foldername in foldernames:
|
||||
foldername = foldernames[0]
|
||||
# if foldername == '../data/mount_data/2020-05-12-10_00/':
|
||||
# continue
|
||||
for foldername in foldernames:
|
||||
#foldername = foldernames[0]
|
||||
if foldername == '../data/mount_data/2020-05-12-10_00/':
|
||||
continue
|
||||
#behabvior is pandas dataframe with all the data
|
||||
bh = Behavior(foldername)
|
||||
|
||||
#2020-06-11-10
|
||||
category = bh.behavior
|
||||
timestamps = bh.start_s
|
||||
# Correct for doubles in chasing on- and offsets to get the right on-/offset pairs
|
||||
@ -47,7 +47,7 @@ def main(datapath: str):
|
||||
fish1_color = ps.red
|
||||
fish2_color = ps.orange
|
||||
|
||||
fig, ax = plt.subplots(4, 1, figsize=(28*ps.cm, 13*ps.cm), height_ratios=[0.5, 0.5, 0.5, 6], sharex=True)
|
||||
fig, ax = plt.subplots(4, 1, figsize=(21*ps.cm, 13*ps.cm), height_ratios=[0.5, 0.5, 0.5, 6], sharex=True)
|
||||
# marker size
|
||||
s = 200
|
||||
ax[0].scatter(physical_contact, np.ones(len(physical_contact)), color='firebrick', marker='|', s=s)
|
||||
@ -92,16 +92,17 @@ def main(datapath: str):
|
||||
ax[3].set_xticks(np.arange(0, 6.1, 0.5))
|
||||
|
||||
labelpad = 40
|
||||
ax[0].set_ylabel('Physical contact', rotation=0, labelpad=labelpad)
|
||||
ax[1].set_ylabel('Chasing events', rotation=0, labelpad=labelpad)
|
||||
ax[2].set_ylabel('Chirps', rotation=0, labelpad=labelpad)
|
||||
fsize = 12
|
||||
ax[0].set_ylabel('Physical contact', rotation=0, labelpad=labelpad, fontsize=fsize)
|
||||
ax[1].set_ylabel('Chasing events', rotation=0, labelpad=labelpad, fontsize=fsize)
|
||||
ax[2].set_ylabel('Chirps', rotation=0, labelpad=labelpad, fontsize=fsize)
|
||||
ax[3].set_ylabel('EODf')
|
||||
|
||||
ax[3].set_xlabel('Time [h]')
|
||||
#ax[0].set_title(foldername.split('/')[-2])
|
||||
ax[0].set_title(foldername.split('/')[-2])
|
||||
# 2020-03-31-9_59
|
||||
plt.subplots_adjust(left=0.13, right=0.987, top=0.97)
|
||||
plt.savefig('../poster/figs/timeline.pdf')
|
||||
plt.subplots_adjust(left=0.158, right=0.987, top=0.918)
|
||||
#plt.savefig('../poster/figs/timeline.pdf')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
Binary file not shown.
Binary file not shown.
@ -23,7 +23,10 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val
|
||||
with single - or physically separated - individuals.
|
||||
\begin{tikzfigure}[]
|
||||
\label{griddrawing}
|
||||
\includegraphics[width=1\linewidth]{figs/introplot}
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
\includegraphics[width=0.8\linewidth]{figs/introplot}
|
||||
>>>>>>> cdcf9564df07914cf57225de5a8bdaa642fbad0e
|
||||
\end{tikzfigure}
|
||||
}
|
||||
\myblock[TranspBlock]{Chirp detection}{
|
||||
@ -41,11 +44,26 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val
|
||||
\includegraphics[width=\linewidth]{figs/timeline.pdf}
|
||||
\end{tikzfigure}
|
||||
\noindent
|
||||
\begin{itemize}
|
||||
\setlength\itemsep{0.5em}
|
||||
\item Two fish compete for one hidding place in one tank,
|
||||
\item Experiment had a 3 hour long darkphase and a 3 hour long light phase.
|
||||
\end{itemize}
|
||||
|
||||
\noindent
|
||||
\begin{minipage}[c]{0.7\linewidth}
|
||||
\begin{tikzfigure}[]
|
||||
\label{fig:example_b}
|
||||
\includegraphics[width=\linewidth]{figs/chirps_winner_loser.pdf}
|
||||
\end{tikzfigure}
|
||||
\noindent
|
||||
\end{minipage} % no space if you would like to put them side by side
|
||||
\begin{minipage}[c]{0.2\linewidth}
|
||||
\begin{itemize}
|
||||
\setlength\itemsep{0.5em}
|
||||
\item Fish who won the competition chirped more often than the fish who lost.
|
||||
\item
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
}
|
||||
|
||||
\myblock[TranspBlock]{Interactions at modulations}{
|
||||
@ -55,19 +73,7 @@ blockverticalspace=2mm, colspace=20mm, subcolspace=0mm]{tikzposter} %Default val
|
||||
\includegraphics[width=0.5\linewidth]{example-image-c}
|
||||
\end{tikzfigure}
|
||||
|
||||
\begin{multicols}{2}
|
||||
\begin{itemize}
|
||||
\setlength\itemsep{0.5em}
|
||||
\item $\Delta$EOD$f$ does not appear to decrease during synchronous modulations ().
|
||||
\item Individuals that rise their EOD$f$ first appear to rise their frequency higher compared to reactors (\textbf{B}).
|
||||
\vfill
|
||||
\null
|
||||
\columnbreak
|
||||
\item Synchronized fish keep distances below 1 m (\textbf{C}) but distances over 3 m also occur (see \textbf{movie}).
|
||||
\item Spatial interactions increase \textbf{after} the start of a synchronous modulation (\textbf{D}).
|
||||
\end{itemize}
|
||||
\end{multicols}
|
||||
\vspace{-1cm}
|
||||
|
||||
}
|
||||
|
||||
\myblock[GrayBlock]{Conclusion}{
|
||||
|
Loading…
Reference in New Issue
Block a user