Merge branch 'main' of https://whale.am28.uni-tuebingen.de/git/mbergmann/gpgrewe2024
329
code/GP_Code.py
@ -1,329 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Oct 22 15:21:41 2024
|
||||
|
||||
@author: diana
|
||||
"""
|
||||
|
||||
import glob
|
||||
import os
|
||||
import rlxnix as rlx
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import scipy.signal as sig
|
||||
from scipy.integrate import quad
|
||||
|
||||
|
||||
### FUNCTIONS ###
|
||||
def binary_spikes(spike_times, duration, dt):
|
||||
"""Converts the spike times to a binary representation.
|
||||
Zeros when there is no spike, one when there is.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
spike_times : np.array
|
||||
The spike times.
|
||||
duration : float
|
||||
The trial duration.
|
||||
dt : float
|
||||
The temporal resolution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
binary : np.array
|
||||
The binary representation of the spike times.
|
||||
"""
|
||||
binary = np.zeros(int(np.round(duration / dt))) #Vektor, der genauso lang ist wie die stim time
|
||||
spike_indices = np.asarray(np.round(spike_times / dt), dtype=int)
|
||||
binary[spike_indices] = 1
|
||||
return binary
|
||||
|
||||
|
||||
def firing_rate(binary_spikes, box_width, dt=0.000025):
|
||||
"""Calculate the firing rate from binary spike data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
binary_spikes : np.array
|
||||
A binary array representing spike occurrences.
|
||||
box_width : float
|
||||
The width of the box filter in seconds.
|
||||
dt : float, optional
|
||||
The temporal resolution (time step) in seconds. Default is 0.000025 seconds.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rate : np.array
|
||||
An array representing the firing rate at each time step.
|
||||
"""
|
||||
box = np.ones(int(box_width // dt))
|
||||
box /= np.sum(box) * dt # Normalization of box kernel to an integral of 1
|
||||
rate = np.convolve(binary_spikes, box, mode="same")
|
||||
return rate
|
||||
|
||||
|
||||
def powerspectrum(rate, dt):
|
||||
"""Compute the power spectrum of a given firing rate.
|
||||
|
||||
This function calculates the power spectrum using the Welch method.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rate : np.array
|
||||
An array of firing rates.
|
||||
dt : float
|
||||
The temporal resolution (time step) in seconds.
|
||||
|
||||
Returns
|
||||
-------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
"""
|
||||
frequency, power = sig.welch(rate, fs=1/dt, nperseg=2**15, noverlap=2**14)
|
||||
return frequency, power
|
||||
|
||||
|
||||
def calculate_integral(frequency, power, point, delta):
|
||||
"""
|
||||
Calculate the integral around a single specified point.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
point : float
|
||||
The harmonic frequency at which to calculate the integral.
|
||||
delta : float
|
||||
Half-width of the range for integration around the point.
|
||||
|
||||
Returns
|
||||
-------
|
||||
integral : float
|
||||
The calculated integral around the point.
|
||||
local_mean : float
|
||||
The local mean value (adjacent integrals).
|
||||
"""
|
||||
indices = (frequency >= point - delta) & (frequency <= point + delta)
|
||||
integral = np.trapz(power[indices], frequency[indices])
|
||||
|
||||
left_indices = (frequency >= point - 5 * delta) & (frequency < point - delta)
|
||||
right_indices = (frequency > point + delta) & (frequency <= point + 5 * delta)
|
||||
|
||||
l_integral = np.trapz(power[left_indices], frequency[left_indices])
|
||||
r_integral = np.trapz(power[right_indices], frequency[right_indices])
|
||||
|
||||
local_mean = np.mean([l_integral, r_integral])
|
||||
return integral, local_mean
|
||||
|
||||
|
||||
def valid_integrals(integral, local_mean, threshold, point):
|
||||
"""
|
||||
Check if the integral exceeds the threshold compared to the local mean and
|
||||
provide feedback on whether the given point is valid or not.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
integral : float
|
||||
The calculated integral around the point.
|
||||
local_mean : float
|
||||
The local mean value (adjacent integrals).
|
||||
threshold : float
|
||||
Threshold value to compare integrals with local mean.
|
||||
point : float
|
||||
The harmonic frequency point being evaluated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
valid : bool
|
||||
True if the integral exceeds the local mean by the threshold, otherwise False.
|
||||
message : str
|
||||
A message stating whether the point is valid or not.
|
||||
"""
|
||||
valid = integral > (local_mean * threshold)
|
||||
if valid:
|
||||
message = f"The point {point} is valid, as its integral exceeds the threshold."
|
||||
else:
|
||||
message = f"The point {point} is not valid, as its integral does not exceed the threshold."
|
||||
return valid, message
|
||||
|
||||
|
||||
def prepare_harmonics(frequencies, categories, num_harmonics, colors):
|
||||
"""
|
||||
Prepare harmonic frequencies and assign colors based on categories.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequencies : list
|
||||
Base frequencies to generate harmonics.
|
||||
categories : list
|
||||
Corresponding categories for the base frequencies.
|
||||
num_harmonics : list
|
||||
Number of harmonics for each base frequency.
|
||||
colors : list
|
||||
List of colors corresponding to the categories.
|
||||
|
||||
Returns
|
||||
-------
|
||||
points : list
|
||||
A flat list of harmonic frequencies.
|
||||
color_mapping : dict
|
||||
A dictionary mapping each category to its corresponding color.
|
||||
points_categories : dict
|
||||
A mapping of categories to their harmonic frequencies.
|
||||
"""
|
||||
points_categories = {}
|
||||
for idx, (freq, category) in enumerate(zip(frequencies, categories)):
|
||||
points_categories[category] = [freq * (i + 1) for i in range(num_harmonics[idx])]
|
||||
|
||||
points = [p for harmonics in points_categories.values() for p in harmonics]
|
||||
color_mapping = {category: colors[idx] for idx, category in enumerate(categories)}
|
||||
|
||||
return points, color_mapping, points_categories
|
||||
|
||||
|
||||
def find_exceeding_points(frequency, power, points, delta, threshold):
|
||||
"""
|
||||
Find the points where the integral exceeds the local mean by a given threshold.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
points : list
|
||||
A list of harmonic frequencies to evaluate.
|
||||
delta : float
|
||||
Half-width of the range for integration around the point.
|
||||
threshold : float
|
||||
Threshold value to compare integrals with local mean.
|
||||
|
||||
Returns
|
||||
-------
|
||||
exceeding_points : list
|
||||
A list of points where the integral exceeds the local mean by the threshold.
|
||||
"""
|
||||
exceeding_points = []
|
||||
|
||||
for point in points:
|
||||
# Calculate the integral and local mean for the current point
|
||||
integral, local_mean = calculate_integral(frequency, power, point, delta)
|
||||
|
||||
# Check if the integral exceeds the threshold
|
||||
valid, message = valid_integrals(integral, local_mean, threshold, point)
|
||||
|
||||
if valid:
|
||||
exceeding_points.append(point)
|
||||
|
||||
return exceeding_points
|
||||
|
||||
|
||||
def plot_highlighted_integrals(frequency, power, exceeding_points, delta, threshold, color_mapping, points_categories):
|
||||
"""
|
||||
Plot the power spectrum and highlight integrals that exceed the threshold.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
exceeding_points : list
|
||||
A list of harmonic frequencies that exceed the threshold.
|
||||
delta : float
|
||||
Half-width of the range for integration around each point.
|
||||
threshold : float
|
||||
Threshold value to compare integrals with local mean.
|
||||
color_mapping : dict
|
||||
A dictionary mapping each category to its color.
|
||||
points_categories : dict
|
||||
A mapping of categories to lists of points.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fig : matplotlib.figure.Figure
|
||||
The created figure object with highlighted integrals.
|
||||
"""
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(frequency, power) # Plot power spectrum
|
||||
|
||||
for point in exceeding_points:
|
||||
integral, local_mean = calculate_integral(frequency, power, point, delta)
|
||||
valid, _ = valid_integrals(integral, local_mean, threshold, point)
|
||||
if valid:
|
||||
# Define color based on the category of the point
|
||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||
# Shade the region around the point where the integral was calculated
|
||||
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
||||
print(f"Integral around {point:.2f} Hz: {integral:.5e}")
|
||||
|
||||
|
||||
# Define left and right boundaries of adjacent regions
|
||||
left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]]
|
||||
right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]]
|
||||
|
||||
# Add vertical dashed lines at the boundaries of the adjacent regions
|
||||
ax.axvline(x=left_boundary, color="k", linestyle="--")
|
||||
ax.axvline(x=right_boundary, color="k", linestyle="--")
|
||||
|
||||
|
||||
ax.set_xlim([0, 1200])
|
||||
ax.set_xlabel('Frequency (Hz)')
|
||||
ax.set_ylabel('Power')
|
||||
ax.set_title('Power Spectrum with Highlighted Integrals')
|
||||
ax.legend()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
### Data retrieval ###
|
||||
datafolder = "../data"
|
||||
example_file = os.path.join("..", "data", "2024-10-16-ad-invivo-1.nix")
|
||||
dataset = rlx.Dataset(example_file)
|
||||
sams = dataset.repro_runs("SAM")
|
||||
sam = sams[2]
|
||||
|
||||
## Data for functions
|
||||
df = sam.metadata["RePro-Info"]["settings"]["deltaf"][0][0]
|
||||
stim = sam.stimuli[1]
|
||||
potential, time = stim.trace_data("V-1")
|
||||
spikes, _ = stim.trace_data("Spikes-1")
|
||||
duration = stim.duration
|
||||
dt = stim.trace_info("V-1").sampling_interval
|
||||
|
||||
|
||||
### Apply Functions to calculate data ###
|
||||
b = binary_spikes(spikes, duration, dt)
|
||||
rate = firing_rate(b, box_width=0.05, dt=dt)
|
||||
frequency, power = powerspectrum(b, dt)
|
||||
|
||||
|
||||
### Important stuff ###
|
||||
## Frequencies
|
||||
eodf = stim.metadata[stim.name]["EODf"][0][0]
|
||||
stimulus_frequency = eodf + df
|
||||
AM = 50 # Hz
|
||||
frequencies = [AM, eodf, stimulus_frequency]
|
||||
|
||||
categories = ["AM", "EODf", "Stimulus frequency"]
|
||||
num_harmonics = [4, 2, 2]
|
||||
colors = ["green", "orange", "red"]
|
||||
|
||||
delta = 2.5
|
||||
threshold = 10
|
||||
|
||||
### Apply functions to make powerspectrum ###
|
||||
integral, local = calculate_integral(frequency, power, eodf, delta)
|
||||
valid = valid_integrals(integral, local, threshold, eodf)
|
||||
points, color, categories = prepare_harmonics(frequencies, categories, num_harmonics, colors)
|
||||
print(len(points))
|
||||
exceeding = find_exceeding_points(frequency, power, points, delta, threshold)
|
||||
print(len(exceeding))
|
||||
|
||||
## Plot power spectrum and highlight integrals
|
||||
fig = plot_highlighted_integrals(frequency, power, points, delta, threshold, color, categories)
|
||||
plt.show()
|
@ -1,154 +0,0 @@
|
||||
import rlxnix as rlx
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
from scipy.signal import welch
|
||||
|
||||
# close all currently open figures
|
||||
plt.close('all')
|
||||
|
||||
'''FUNCTIONS'''
|
||||
def plot_vt_spikes(t, v, spike_t):
|
||||
fig = plt.figure(figsize=(5, 2.5))
|
||||
# alternative to ax = axs[0]
|
||||
ax = fig.add_subplot()
|
||||
# plot vt diagram
|
||||
ax.plot(t[t<0.1], v[t<0.1])
|
||||
# plot spikes into vt diagram, at max V
|
||||
ax.scatter(spike_t[spike_t<0.1], np.ones_like(spike_t[spike_t<0.1]) * np.max(v))
|
||||
plt.show()
|
||||
|
||||
def scatter_plot(colormap, stimuli_list, stimulus_count):
|
||||
'''plot scatter plot for one sam with all 3 stims'''
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot()
|
||||
|
||||
ax.eventplot(stimuli_list, colors=colormap)
|
||||
ax.set_xlabel('Spike Times [ms]')
|
||||
ax.set_ylabel('Loop #')
|
||||
ax.set_yticks(range(stimulus_count))
|
||||
ax.set_title('Spikes of SAM 3')
|
||||
plt.show()
|
||||
|
||||
# create binary array with ones for spike times
|
||||
def binary_spikes(spike_times, duration , dt):
|
||||
'''Converts spike times to binary representation
|
||||
Params
|
||||
------
|
||||
spike_times: np.array
|
||||
spike times
|
||||
duration: float
|
||||
trial duration
|
||||
dt: float
|
||||
temporal resolution
|
||||
|
||||
Returns
|
||||
--------
|
||||
binary: np.array
|
||||
The binary representation of the spike times
|
||||
'''
|
||||
binary = np.zeros(int(duration//dt)) # // is truncated division, returns number w/o decimals, same as np.round
|
||||
spike_indices = np.asarray(np.round(spike_times//dt), dtype=int)
|
||||
binary[spike_indices] = 1
|
||||
return binary
|
||||
|
||||
# function to plot psth
|
||||
def firing_rates(binary_spikes, box_width=0.01, dt=0.000025):
|
||||
box = np.ones(int(box_width // dt))
|
||||
box /= np.sum(box * dt) # normalize box kernel w interal of 1
|
||||
rate = np.convolve(binary_spikes, box, mode='same')
|
||||
return rate
|
||||
|
||||
def power_spectrum(rate, dt):
|
||||
f, p = welch(rate, fs = 1./dt, nperseg=2**16, noverlap=2**15)
|
||||
# algorithm makes rounding mistakes, we want to calc many spectra and take mean of those
|
||||
# nperseg: length of segments in # datapoints
|
||||
# noverlap: # datapoints that overlap in segments
|
||||
return f, p
|
||||
|
||||
def power_spectrum_plot(f, p):
|
||||
# plot power spectrum
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot()
|
||||
ax.plot(freq, power)
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [1/Hz]')
|
||||
ax.set_xlim(0, 1000)
|
||||
plt.show()
|
||||
|
||||
'''IMPORT DATA'''
|
||||
datafolder = '../data' #./ wo ich gerade bin; ../ eine ebene höher; ../../ zwei ebenen höher
|
||||
|
||||
example_file = os.path.join('..', 'data', '2024-10-16-ac-invivo-1.nix')
|
||||
|
||||
'''EXTRACT DATA'''
|
||||
dataset = rlx.Dataset(example_file)
|
||||
|
||||
# get sams
|
||||
sams = dataset.repro_runs('SAM')
|
||||
sam = sams[2]
|
||||
|
||||
# get potetial over time (vt curve)
|
||||
potential, time = sam.trace_data('V-1')
|
||||
|
||||
# get spike times
|
||||
spike_times, _ = sam.trace_data('Spikes-1')
|
||||
|
||||
# get stim count
|
||||
stim_count = sam.stimulus_count
|
||||
|
||||
# extract spike times of all 3 loops of current sam
|
||||
stimuli = []
|
||||
for i in range(stim_count):
|
||||
# get stim i from sam
|
||||
stim = sam.stimuli[i]
|
||||
potential_stim, time_stim = stim.trace_data('V-1')
|
||||
# get spike_times
|
||||
spike_times_stim, _ = stim.trace_data('Spikes-1')
|
||||
stimuli.append(spike_times_stim)
|
||||
|
||||
eodf = stim.metadata[stim.name]['EODF'][0][0]
|
||||
df = stim.metadata['RePro-Info']['settings']['deltaf'][0][0]
|
||||
stimulus_freq = df + eodf
|
||||
|
||||
'''PLOT'''
|
||||
# create colormap
|
||||
colors = plt.cm.prism(np.linspace(0, 1, stim_count))
|
||||
|
||||
# timeline of whole rec
|
||||
dataset.plot_timeline()
|
||||
|
||||
# voltage and spikes of current sam
|
||||
plot_vt_spikes(time, potential, spike_times)
|
||||
|
||||
# spike times of all loops
|
||||
scatter_plot(colors, stimuli, stim_count)
|
||||
|
||||
|
||||
'''POWER SPECTRUM'''
|
||||
# define variables for binary spikes function
|
||||
spikes, _ = stim.trace_data('Spikes-1')
|
||||
ti = stim.trace_info('V-1')
|
||||
dt = ti.sampling_interval
|
||||
duration = stim.duration
|
||||
|
||||
### spectrum
|
||||
# vector with binary values for wholes length of stim
|
||||
binary = binary_spikes(spikes, duration, dt)
|
||||
|
||||
# calculate firing rate
|
||||
rate = firing_rates(binary, 0.01, dt) # box width of 10 ms
|
||||
|
||||
# plot psth or whatever
|
||||
# plt.plot(time_stim, rate)
|
||||
# plt.show()
|
||||
|
||||
freq, power = power_spectrum(binary, dt)
|
||||
|
||||
power_spectrum_plot(freq, power)
|
||||
|
||||
|
||||
### TODO:
|
||||
# then loop over sams/dfs, all stims, intensities
|
||||
# when does stim start in eodf/ at which phase and how does that influence our signal --> alignment problem: egal wenn wir spectren haben
|
||||
# we want to see peaks at phase locking to own and stim frequency, and at amp modulation frequency
|
@ -71,13 +71,20 @@ def power_spectrum_plot(f, p):
|
||||
functions_path = r"C:\Users\diana\OneDrive - UT Cloud\Master\GPs\GP1_Grewe\Projekt\gpgrewe2024\code"
|
||||
sys.path.append(functions_path)
|
||||
import useful_functions as u
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
def plot_highlighted_integrals(frequency, power, points, color_mapping, points_categories, delta=2.5):
|
||||
def float_formatter(x, _):
|
||||
"""Format the y-axis values as floats with a specified precision."""
|
||||
return f'{x:.5f}'
|
||||
|
||||
def plot_highlighted_integrals(ax, frequency, power, points, color_mapping, points_categories, delta=2.5):
|
||||
"""
|
||||
Plot the power spectrum and highlight integrals that exceed the threshold.
|
||||
Highlight integrals on the existing axes of the power spectrum.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ax : matplotlib.axes.Axes
|
||||
The axes on which to plot the highlighted integrals.
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
@ -93,50 +100,40 @@ def plot_highlighted_integrals(frequency, power, points, color_mapping, points_c
|
||||
|
||||
Returns
|
||||
-------
|
||||
fig : matplotlib.figure.Figure
|
||||
The created figure object with highlighted integrals.
|
||||
None
|
||||
"""
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(frequency, power) # Plot power spectrum
|
||||
|
||||
ax.plot(frequency, power, color = "k") # Plot power spectrum on the existing axes
|
||||
|
||||
for point in points:
|
||||
# Use the imported function to calculate the integral and local mean
|
||||
integral, local_mean, _ = u.calculate_integral(frequency, power, point)
|
||||
# Calculate the integral and local mean
|
||||
integral, local_mean = u.calculate_integral_2(frequency, power, point)
|
||||
|
||||
# Use the imported function to check if the point is valid
|
||||
# Check if the point is valid
|
||||
valid = u.valid_integrals(integral, local_mean, point)
|
||||
|
||||
if valid:
|
||||
# Define color based on the category of the point
|
||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||
|
||||
# Find the category of the point
|
||||
point_category = next((cat for cat, pts in points_categories.items() if point in pts), "Unknown")
|
||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||
|
||||
# Shade the region around the point where the integral was calculated
|
||||
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
||||
|
||||
# Print out point, category, and color
|
||||
print(f"{point_category}: Integral: {integral:.5e}, Color: {color}")
|
||||
|
||||
# Annotate the plot with the point and its color
|
||||
ax.text(point, max(power) * 0.9, f'{point:.2f}', color=color, fontsize=10, ha='center')
|
||||
|
||||
# Define left and right boundaries of adjacent regions
|
||||
left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]]
|
||||
right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]]
|
||||
|
||||
# Add vertical dashed lines at the boundaries of the adjacent regions
|
||||
#ax.axvline(x=left_boundary, color="k", linestyle="--")
|
||||
#ax.axvline(x=right_boundary, color="k", linestyle="--")
|
||||
ax.axvspan(point - delta, point + delta, color=color, alpha=0.2, label=f'{point_category}')
|
||||
|
||||
# Text with categories and colors
|
||||
ax.text(1000, 5.8e-5, "AM", fontsize=10, color="green", alpha=0.2)
|
||||
ax.text(1000, 5.6e-5, "Nyquist", fontsize=10, color="blue", alpha=0.2)
|
||||
ax.text(1000, 5.4e-5, "EODf", fontsize=10, color="red", alpha=0.2)
|
||||
ax.text(1000, 5.2e-5, "Stimulus frequency", fontsize=10, color="orange", alpha=0.2)
|
||||
ax.text(1000, 5.0e-5, "EODf of awake fish", fontsize=10, color="purple", alpha=0.2)
|
||||
|
||||
ax.set_xlim([0, 1200])
|
||||
ax.set_ylim([0, 6e-5])
|
||||
ax.set_xlabel('Frequency (Hz)')
|
||||
ax.set_ylabel('Power')
|
||||
ax.set_title('Power Spectrum with Highlighted Integrals')
|
||||
ax.legend()
|
||||
|
||||
return fig, ax
|
||||
ax.set_title('Power Spectrum with highlighted Integrals')
|
||||
|
||||
# Apply float formatting to the y-axis
|
||||
ax.yaxis.set_major_formatter(ticker.FuncFormatter(float_formatter))
|
||||
|
||||
|
||||
|
||||
|
@ -47,7 +47,7 @@ def all_coming_together(freq_array, power_array, points_list, categories, num_ha
|
||||
color = colors[i]
|
||||
|
||||
# Step 1: Calculate the integral for the point
|
||||
integral, local_mean, _ = calculate_integral(freq_array, power_array, point, delta)
|
||||
integral, local_mean = calculate_integral_2(freq_array, power_array, point, delta)
|
||||
|
||||
# Step 2: Check if the point is valid
|
||||
valid = valid_integrals(integral, local_mean, point, threshold)
|
||||
@ -150,6 +150,42 @@ def calculate_integral(freq, power, point, delta = 2.5):
|
||||
local_mean = np.mean([l_integral, r_integral])
|
||||
return integral, local_mean, p_power
|
||||
|
||||
def calculate_integral_2(freq, power, point, delta = 2.5):
|
||||
"""
|
||||
Calculate the integral around a single specified point.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
point : float
|
||||
The harmonic frequency at which to calculate the integral.
|
||||
delta : float, optional
|
||||
Radius of the range for integration around the point. The default is 2.5.
|
||||
|
||||
Returns
|
||||
-------
|
||||
integral : float
|
||||
The calculated integral around the point.
|
||||
local_mean : float
|
||||
The local mean value (adjacent integrals).
|
||||
p_power : float
|
||||
The local maxiumum power.
|
||||
"""
|
||||
indices = (freq >= point - delta) & (freq <= point + delta)
|
||||
integral = np.trapz(power[indices], freq[indices])
|
||||
|
||||
left_indices = (freq >= point - 5 * delta) & (freq < point - delta)
|
||||
right_indices = (freq > point + delta) & (freq <= point + 5 * delta)
|
||||
|
||||
l_integral = np.trapz(power[left_indices], freq[left_indices])
|
||||
r_integral = np.trapz(power[right_indices], freq[right_indices])
|
||||
|
||||
local_mean = np.mean([l_integral, r_integral])
|
||||
return integral, local_mean
|
||||
|
||||
def contrast_sorting(sams, con_1 = 20, con_2 = 10, con_3 = 5, stim_count = 3, stim_dur = 2):
|
||||
'''
|
||||
sorts the sams into three contrasts
|
||||
|
1575
results/contrast_tuning2024-10-16-ab-invivo-1.svg
Normal file
After Width: | Height: | Size: 42 KiB |
1630
results/contrast_tuning2024-10-16-ad-invivo-1.svg
Normal file
After Width: | Height: | Size: 43 KiB |
1545
results/contrast_tuning2024-10-16-ae-invivo-1.svg
Normal file
After Width: | Height: | Size: 41 KiB |
1710
results/contrast_tuning2024-10-16-af-invivo-1.svg
Normal file
After Width: | Height: | Size: 46 KiB |
1763
results/contrast_tuning2024-10-16-ag-invivo-1.svg
Normal file
After Width: | Height: | Size: 47 KiB |
1571
results/contrast_tuning2024-10-16-ai-invivo-1.svg
Normal file
After Width: | Height: | Size: 42 KiB |
1568
results/contrast_tuning2024-10-16-aj-invivo-1.svg
Normal file
After Width: | Height: | Size: 42 KiB |
1772
results/contrast_tuning2024-10-16-al-invivo-1.svg
Normal file
After Width: | Height: | Size: 48 KiB |
1464
results/tuning_curve2024-10-16-ab-invivo-1.svg
Normal file
After Width: | Height: | Size: 38 KiB |
1497
results/tuning_curve2024-10-16-ad-invivo-1.svg
Normal file
After Width: | Height: | Size: 39 KiB |
1437
results/tuning_curve2024-10-16-ae-invivo-1.svg
Normal file
After Width: | Height: | Size: 37 KiB |
1587
results/tuning_curve2024-10-16-af-invivo-1.svg
Normal file
After Width: | Height: | Size: 42 KiB |
1621
results/tuning_curve2024-10-16-ag-invivo-1.svg
Normal file
After Width: | Height: | Size: 43 KiB |
1455
results/tuning_curve2024-10-16-ai-invivo-1.svg
Normal file
After Width: | Height: | Size: 38 KiB |
1457
results/tuning_curve2024-10-16-aj-invivo-1.svg
Normal file
After Width: | Height: | Size: 38 KiB |
1587
results/tuning_curve2024-10-16-al-invivo-1.svg
Normal file
After Width: | Height: | Size: 42 KiB |
2707
results/tuning_curves_10_16.svg
Normal file
After Width: | Height: | Size: 79 KiB |