Delete code/GP_Code.py

This commit is contained in:
sarah.eisele 2024-10-25 13:39:39 +00:00
parent 53358acbde
commit 337b9d8e0e

View File

@ -1,329 +0,0 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 22 15:21:41 2024
@author: diana
"""
import glob
import os
import rlxnix as rlx
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal as sig
from scipy.integrate import quad
### FUNCTIONS ###
def binary_spikes(spike_times, duration, dt):
"""Converts the spike times to a binary representation.
Zeros when there is no spike, one when there is.
Parameters
----------
spike_times : np.array
The spike times.
duration : float
The trial duration.
dt : float
The temporal resolution.
Returns
-------
binary : np.array
The binary representation of the spike times.
"""
binary = np.zeros(int(np.round(duration / dt))) #Vektor, der genauso lang ist wie die stim time
spike_indices = np.asarray(np.round(spike_times / dt), dtype=int)
binary[spike_indices] = 1
return binary
def firing_rate(binary_spikes, box_width, dt=0.000025):
"""Calculate the firing rate from binary spike data.
Parameters
----------
binary_spikes : np.array
A binary array representing spike occurrences.
box_width : float
The width of the box filter in seconds.
dt : float, optional
The temporal resolution (time step) in seconds. Default is 0.000025 seconds.
Returns
-------
rate : np.array
An array representing the firing rate at each time step.
"""
box = np.ones(int(box_width // dt))
box /= np.sum(box) * dt # Normalization of box kernel to an integral of 1
rate = np.convolve(binary_spikes, box, mode="same")
return rate
def powerspectrum(rate, dt):
"""Compute the power spectrum of a given firing rate.
This function calculates the power spectrum using the Welch method.
Parameters
----------
rate : np.array
An array of firing rates.
dt : float
The temporal resolution (time step) in seconds.
Returns
-------
frequency : np.array
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
"""
frequency, power = sig.welch(rate, fs=1/dt, nperseg=2**15, noverlap=2**14)
return frequency, power
def calculate_integral(frequency, power, point, delta):
"""
Calculate the integral around a single specified point.
Parameters
----------
frequency : np.array
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
point : float
The harmonic frequency at which to calculate the integral.
delta : float
Half-width of the range for integration around the point.
Returns
-------
integral : float
The calculated integral around the point.
local_mean : float
The local mean value (adjacent integrals).
"""
indices = (frequency >= point - delta) & (frequency <= point + delta)
integral = np.trapz(power[indices], frequency[indices])
left_indices = (frequency >= point - 5 * delta) & (frequency < point - delta)
right_indices = (frequency > point + delta) & (frequency <= point + 5 * delta)
l_integral = np.trapz(power[left_indices], frequency[left_indices])
r_integral = np.trapz(power[right_indices], frequency[right_indices])
local_mean = np.mean([l_integral, r_integral])
return integral, local_mean
def valid_integrals(integral, local_mean, threshold, point):
"""
Check if the integral exceeds the threshold compared to the local mean and
provide feedback on whether the given point is valid or not.
Parameters
----------
integral : float
The calculated integral around the point.
local_mean : float
The local mean value (adjacent integrals).
threshold : float
Threshold value to compare integrals with local mean.
point : float
The harmonic frequency point being evaluated.
Returns
-------
valid : bool
True if the integral exceeds the local mean by the threshold, otherwise False.
message : str
A message stating whether the point is valid or not.
"""
valid = integral > (local_mean * threshold)
if valid:
message = f"The point {point} is valid, as its integral exceeds the threshold."
else:
message = f"The point {point} is not valid, as its integral does not exceed the threshold."
return valid, message
def prepare_harmonics(frequencies, categories, num_harmonics, colors):
"""
Prepare harmonic frequencies and assign colors based on categories.
Parameters
----------
frequencies : list
Base frequencies to generate harmonics.
categories : list
Corresponding categories for the base frequencies.
num_harmonics : list
Number of harmonics for each base frequency.
colors : list
List of colors corresponding to the categories.
Returns
-------
points : list
A flat list of harmonic frequencies.
color_mapping : dict
A dictionary mapping each category to its corresponding color.
points_categories : dict
A mapping of categories to their harmonic frequencies.
"""
points_categories = {}
for idx, (freq, category) in enumerate(zip(frequencies, categories)):
points_categories[category] = [freq * (i + 1) for i in range(num_harmonics[idx])]
points = [p for harmonics in points_categories.values() for p in harmonics]
color_mapping = {category: colors[idx] for idx, category in enumerate(categories)}
return points, color_mapping, points_categories
def find_exceeding_points(frequency, power, points, delta, threshold):
"""
Find the points where the integral exceeds the local mean by a given threshold.
Parameters
----------
frequency : np.array
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
points : list
A list of harmonic frequencies to evaluate.
delta : float
Half-width of the range for integration around the point.
threshold : float
Threshold value to compare integrals with local mean.
Returns
-------
exceeding_points : list
A list of points where the integral exceeds the local mean by the threshold.
"""
exceeding_points = []
for point in points:
# Calculate the integral and local mean for the current point
integral, local_mean = calculate_integral(frequency, power, point, delta)
# Check if the integral exceeds the threshold
valid, message = valid_integrals(integral, local_mean, threshold, point)
if valid:
exceeding_points.append(point)
return exceeding_points
def plot_highlighted_integrals(frequency, power, exceeding_points, delta, threshold, color_mapping, points_categories):
"""
Plot the power spectrum and highlight integrals that exceed the threshold.
Parameters
----------
frequency : np.array
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
exceeding_points : list
A list of harmonic frequencies that exceed the threshold.
delta : float
Half-width of the range for integration around each point.
threshold : float
Threshold value to compare integrals with local mean.
color_mapping : dict
A dictionary mapping each category to its color.
points_categories : dict
A mapping of categories to lists of points.
Returns
-------
fig : matplotlib.figure.Figure
The created figure object with highlighted integrals.
"""
fig, ax = plt.subplots()
ax.plot(frequency, power) # Plot power spectrum
for point in exceeding_points:
integral, local_mean = calculate_integral(frequency, power, point, delta)
valid, _ = valid_integrals(integral, local_mean, threshold, point)
if valid:
# Define color based on the category of the point
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
# Shade the region around the point where the integral was calculated
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
print(f"Integral around {point:.2f} Hz: {integral:.5e}")
# Define left and right boundaries of adjacent regions
left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]]
right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]]
# Add vertical dashed lines at the boundaries of the adjacent regions
ax.axvline(x=left_boundary, color="k", linestyle="--")
ax.axvline(x=right_boundary, color="k", linestyle="--")
ax.set_xlim([0, 1200])
ax.set_xlabel('Frequency (Hz)')
ax.set_ylabel('Power')
ax.set_title('Power Spectrum with Highlighted Integrals')
ax.legend()
return fig
### Data retrieval ###
datafolder = "../data"
example_file = os.path.join("..", "data", "2024-10-16-ad-invivo-1.nix")
dataset = rlx.Dataset(example_file)
sams = dataset.repro_runs("SAM")
sam = sams[2]
## Data for functions
df = sam.metadata["RePro-Info"]["settings"]["deltaf"][0][0]
stim = sam.stimuli[1]
potential, time = stim.trace_data("V-1")
spikes, _ = stim.trace_data("Spikes-1")
duration = stim.duration
dt = stim.trace_info("V-1").sampling_interval
### Apply Functions to calculate data ###
b = binary_spikes(spikes, duration, dt)
rate = firing_rate(b, box_width=0.05, dt=dt)
frequency, power = powerspectrum(b, dt)
### Important stuff ###
## Frequencies
eodf = stim.metadata[stim.name]["EODf"][0][0]
stimulus_frequency = eodf + df
AM = 50 # Hz
frequencies = [AM, eodf, stimulus_frequency]
categories = ["AM", "EODf", "Stimulus frequency"]
num_harmonics = [4, 2, 2]
colors = ["green", "orange", "red"]
delta = 2.5
threshold = 10
### Apply functions to make powerspectrum ###
integral, local = calculate_integral(frequency, power, eodf, delta)
valid = valid_integrals(integral, local, threshold, eodf)
points, color, categories = prepare_harmonics(frequencies, categories, num_harmonics, colors)
print(len(points))
exceeding = find_exceeding_points(frequency, power, points, delta, threshold)
print(len(exceeding))
## Plot power spectrum and highlight integrals
fig = plot_highlighted_integrals(frequency, power, points, delta, threshold, color, categories)
plt.show()