[useful_functions.py] added contrast_sorting function
This commit is contained in:
parent
732f4d39a9
commit
873be0a698
@ -154,6 +154,59 @@ def calculate_integral(freq, power, point, delta = 2.5):
|
|||||||
local_mean = np.mean([l_integral, r_integral])
|
local_mean = np.mean([l_integral, r_integral])
|
||||||
return integral, local_mean, p_power
|
return integral, local_mean, p_power
|
||||||
|
|
||||||
|
def contrast_sorting(sams, con_1 = 20, con_2 = 10, con_3 = 5, stim_count = 3, stim_dur = 2):
|
||||||
|
'''
|
||||||
|
sorts the sams into three contrasts
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
sams : ReproRuns
|
||||||
|
The sams to be sorted.
|
||||||
|
con_1 : int, optional
|
||||||
|
the first contrast. The default is 20.
|
||||||
|
con_2 : int, optional
|
||||||
|
the second contrast. The default is 10.
|
||||||
|
con_3 : int, optional
|
||||||
|
the third contrast. The default is 5.
|
||||||
|
stim_count : int, optional
|
||||||
|
the amount of stimuli per sam in a good sam. The default is 3.
|
||||||
|
stim_dur : int, optional
|
||||||
|
The stimulus duration. The default is 2.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
contrast_sams : dictionary
|
||||||
|
A dictionary containing all sams sorted to the contrasts.
|
||||||
|
|
||||||
|
'''
|
||||||
|
# dictionary for the contrasts
|
||||||
|
contrast_sams = {con_1 : [],
|
||||||
|
con_2 : [],
|
||||||
|
con_3 : []}
|
||||||
|
# loop over all sams
|
||||||
|
for sam in sams:
|
||||||
|
# get the contrast
|
||||||
|
avg_dur, contrast, _, _, _, _, _ = sam_data(sam)
|
||||||
|
# check for valid trails
|
||||||
|
if np.isnan(contrast):
|
||||||
|
continue
|
||||||
|
elif sam.stimulus_count < stim_count: #aborted trials
|
||||||
|
continue
|
||||||
|
elif avg_dur < (stim_dur * 0.8):
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
contrast = int(contrast) # get integer of contrast
|
||||||
|
# sort them accordingly
|
||||||
|
if contrast == con_1:
|
||||||
|
contrast_sams[con_1].append(sam)
|
||||||
|
elif contrast == con_2:
|
||||||
|
contrast_sams[con_2].append(sam)
|
||||||
|
elif contrast == con_3:
|
||||||
|
contrast_sams[con_3].append(sam)
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
return contrast_sams
|
||||||
|
|
||||||
def extract_stim_data(stimulus):
|
def extract_stim_data(stimulus):
|
||||||
'''
|
'''
|
||||||
extracts all necessary metadata for each stimulus
|
extracts all necessary metadata for each stimulus
|
||||||
|
Loading…
Reference in New Issue
Block a user