diff --git a/code/useful_functions.py b/code/useful_functions.py index 9f56b57..72a58f6 100644 --- a/code/useful_functions.py +++ b/code/useful_functions.py @@ -154,6 +154,59 @@ def calculate_integral(freq, power, point, delta = 2.5): local_mean = np.mean([l_integral, r_integral]) return integral, local_mean, p_power +def contrast_sorting(sams, con_1 = 20, con_2 = 10, con_3 = 5, stim_count = 3, stim_dur = 2): + ''' + sorts the sams into three contrasts + + Parameters + ---------- + sams : ReproRuns + The sams to be sorted. + con_1 : int, optional + the first contrast. The default is 20. + con_2 : int, optional + the second contrast. The default is 10. + con_3 : int, optional + the third contrast. The default is 5. + stim_count : int, optional + the amount of stimuli per sam in a good sam. The default is 3. + stim_dur : int, optional + The stimulus duration. The default is 2. + + Returns + ------- + contrast_sams : dictionary + A dictionary containing all sams sorted to the contrasts. + + ''' + # dictionary for the contrasts + contrast_sams = {con_1 : [], + con_2 : [], + con_3 : []} + # loop over all sams + for sam in sams: + # get the contrast + avg_dur, contrast, _, _, _, _, _ = sam_data(sam) + # check for valid trails + if np.isnan(contrast): + continue + elif sam.stimulus_count < stim_count: #aborted trials + continue + elif avg_dur < (stim_dur * 0.8): + continue + else: + contrast = int(contrast) # get integer of contrast + # sort them accordingly + if contrast == con_1: + contrast_sams[con_1].append(sam) + elif contrast == con_2: + contrast_sams[con_2].append(sam) + elif contrast == con_3: + contrast_sams[con_3].append(sam) + else: + continue + return contrast_sams + def extract_stim_data(stimulus): ''' extracts all necessary metadata for each stimulus