Changed function
This commit is contained in:
parent
a90f35b8b9
commit
04c43bbfcf
141
code/GP_Code.py
141
code/GP_Code.py
@ -1,10 +1,10 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Thu Oct 17 09:23:10 2024
|
||||
Created on Tue Oct 22 11:43:41 2024
|
||||
|
||||
@author: diana
|
||||
"""
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
|
||||
import glob
|
||||
import os
|
||||
@ -101,11 +101,12 @@ def prepare_harmonics(frequencies, categories, num_harmonics, colors):
|
||||
return points, color_mapping, points_categories
|
||||
|
||||
|
||||
def plot_power_spectrum_with_integrals(frequency, power, points, delta, color_mapping, points_categories):
|
||||
"""Create a figure of the power spectrum with integrals highlighted around specified points.
|
||||
def plot_power_spectrum_with_integrals(frequency, power, points, delta):
|
||||
"""
|
||||
Create a figure of the power spectrum and calculate integrals around specified points.
|
||||
|
||||
This function creates a plot of the power spectrum and shades areas around
|
||||
specified harmonic points to indicate the calculated integrals.
|
||||
This function generates the plot of the power spectrum and calculates integrals
|
||||
around specified harmonic points, but it does not color the regions or add vertical lines.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@ -117,37 +118,121 @@ def plot_power_spectrum_with_integrals(frequency, power, points, delta, color_ma
|
||||
A list of harmonic frequencies to highlight.
|
||||
delta : float
|
||||
Half-width of the range for integration around each point.
|
||||
color_mapping : dict
|
||||
A mapping of point categories to colors.
|
||||
points_categories : dict
|
||||
A mapping of categories to lists of points.
|
||||
|
||||
Returns
|
||||
-------
|
||||
integrals : list
|
||||
List of calculated integrals for each point.
|
||||
local_means : list
|
||||
List of local mean values (adjacent integrals).
|
||||
fig : matplotlib.figure.Figure
|
||||
The created figure object.
|
||||
The created figure object with the power plot.
|
||||
ax : matplotlib.axes.Axes
|
||||
The axes object for further modifications.
|
||||
"""
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(frequency, power)
|
||||
ax.plot(frequency, power) # Plot power spectrum
|
||||
|
||||
integrals = []
|
||||
local_means = []
|
||||
|
||||
for point in points:
|
||||
# Define indices for the integration window
|
||||
indices = (frequency >= point - delta) & (frequency <= point + delta)
|
||||
# Calculate integral around the point
|
||||
integral = np.trapz(power[indices], frequency[indices])
|
||||
integrals.append(integral)
|
||||
|
||||
# Get color based on point category
|
||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||
ax.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
||||
print(f"Integral around {point:.2f} Hz: {integral:.5e}")
|
||||
|
||||
ax.set_xlim([0, 1200])
|
||||
|
||||
# Calculate adjacent region integrals for local mean
|
||||
left_indices = (frequency >= point - 5 * delta) & (frequency < point - delta)
|
||||
right_indices = (frequency > point + delta) & (frequency <= point + 5 * delta)
|
||||
|
||||
l_integral = np.trapz(power[left_indices], frequency[left_indices])
|
||||
r_integral = np.trapz(power[right_indices], frequency[right_indices])
|
||||
|
||||
local_mean = np.mean([l_integral, r_integral])
|
||||
local_means.append(local_mean)
|
||||
|
||||
ax.set_xlim([0, 1200]) # Set x-axis limit
|
||||
ax.set_xlabel('Frequency (Hz)')
|
||||
ax.set_ylabel('Power')
|
||||
ax.set_title('Power Spectrum with marked Integrals')
|
||||
ax.legend()
|
||||
ax.set_title('Power Spectrum with Integrals (Uncolored)')
|
||||
|
||||
return integrals, local_means, fig, ax
|
||||
|
||||
|
||||
def highlight_integrals_with_threshold(frequency, power, points, delta, threshold, integrals, local_means, color_mapping, points_categories, fig_orig, ax_orig):
|
||||
"""
|
||||
Create a new figure by highlighting integrals that exceed the threshold.
|
||||
|
||||
This function generates a new figure with colored shading around points where the integrals exceed
|
||||
the local mean by a given threshold and adds vertical lines at the boundaries of adjacent regions.
|
||||
It leaves the original figure unchanged.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frequency : np.array
|
||||
An array of frequencies corresponding to the power values.
|
||||
power : np.array
|
||||
An array of power spectral density values.
|
||||
points : list
|
||||
A list of harmonic frequencies to highlight.
|
||||
delta : float
|
||||
Half-width of the range for integration around each point.
|
||||
threshold : float
|
||||
Threshold value to compare integrals with local mean.
|
||||
integrals : list
|
||||
List of calculated integrals for each point.
|
||||
local_means : list
|
||||
List of local mean values (adjacent integrals).
|
||||
color_mapping : dict
|
||||
A mapping of point categories to colors.
|
||||
points_categories : dict
|
||||
A mapping of categories to lists of points.
|
||||
fig_orig : matplotlib.figure.Figure
|
||||
The original figure object (remains unchanged).
|
||||
ax_orig : matplotlib.axes.Axes
|
||||
The original axes object (remains unchanged).
|
||||
|
||||
Returns
|
||||
-------
|
||||
fig_new : matplotlib.figure.Figure
|
||||
The new figure object with color highlights and vertical lines.
|
||||
"""
|
||||
|
||||
# Create a new figure based on the original power spectrum
|
||||
fig_new, ax_new = plt.subplots()
|
||||
ax_new.plot(frequency, power) # Plot the same power spectrum
|
||||
|
||||
# Loop through each point and check if the integral exceeds the threshold
|
||||
for i, point in enumerate(points):
|
||||
exceeds = integrals[i] > (local_means[i] * threshold)
|
||||
|
||||
if exceeds:
|
||||
# Define color based on the category of the point
|
||||
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
|
||||
# Shade the region around the point where the integral was calculated
|
||||
ax_new.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
|
||||
print(f"Integral around {point:.2f} Hz: {integrals[i]:.5e}")
|
||||
|
||||
# Define left and right boundaries of adjacent regions
|
||||
left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]]
|
||||
right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]]
|
||||
|
||||
# Add vertical dashed lines at the boundaries of the adjacent regions
|
||||
ax_new.axvline(x=left_boundary, color="k", linestyle="--")
|
||||
ax_new.axvline(x=right_boundary, color="k", linestyle="--")
|
||||
|
||||
# Update plot legend and return the new figure
|
||||
ax_new.set_xlim([0, 1200])
|
||||
ax_new.set_xlabel('Frequency (Hz)')
|
||||
ax_new.set_ylabel('Power')
|
||||
ax_new.set_title('Power Spectrum with Highlighted Integrals')
|
||||
ax_new.legend()
|
||||
|
||||
return fig_new
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
|
||||
@ -184,9 +269,13 @@ categories = ["AM", "EODf", "Stimulus frequency"]
|
||||
num_harmonics = [4, 2, 2]
|
||||
colors = ["green", "orange", "red"]
|
||||
delta = 2.5
|
||||
threshold = 10
|
||||
|
||||
|
||||
### Peaks im Powerspektrum finden ###
|
||||
###
|
||||
points, color_mapping, points_categories = prepare_harmonics(frequencies, categories, num_harmonics, colors)
|
||||
fig = plot_power_spectrum_with_integrals(frequency, power, points, delta, color_mapping, points_categories)
|
||||
plt.show()
|
||||
|
||||
# First, create the power spectrum plot with integrals (without coloring)
|
||||
integrals, local_means, fig1, ax1 = plot_power_spectrum_with_integrals(frequency, power, points, delta)
|
||||
|
||||
# Then, create a new separate figure where integrals exceeding the threshold are highlighted
|
||||
fig2 = highlight_integrals_with_threshold(frequency, power, points, delta, threshold, integrals, local_means, color_mapping, points_categories, fig1, ax1)
|
Loading…
Reference in New Issue
Block a user