gpgrewe2024/code/GP_Code.py
2024-10-22 12:02:41 +02:00

281 lines
9.7 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Tue Oct 22 11:43:41 2024
@author: diana
"""
import glob
import os
import rlxnix as rlx
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal as sig
from scipy.integrate import quad
### FUNCTIONS ###
def binary_spikes(spike_times, duration, dt):
""" Converts the spike times to a binary representation.
Zeros when there is no spike, One when there is.
Parameters
----------
spike_times : np.array
The spike times.
duration : float
The trial duration.
dt : float
the temporal resolution.
Returns
-------
binary : np.array
The binary representation of the spike times.
"""
binary = np.zeros(int(np.round(duration / dt))) #Vektor, der genauso lang ist wie die stim time
spike_indices = np.asarray(np.round(spike_times / dt), dtype=int)
binary[spike_indices] = 1
return binary
def firing_rate(binary_spikes, box_width, dt=0.000025):
"""Calculate the firing rate from binary spike data.
This function computes the firing rate using a boxcar (moving average)
filter of a specified width.
Parameters
----------
binary_spikes : np.array
A binary array representing spike occurrences.
box_width : float
The width of the box filter in seconds.
dt : float, optional
The temporal resolution (time step) in seconds. Default is 0.000025 seconds.
Returns
-------
rate : np.array
An array representing the firing rate at each time step.
"""
box = np.ones(int(box_width // dt))
box /= np.sum(box) * dt #Normalization of box kernel to an integral of 1
rate = np.convolve(binary_spikes, box, mode="same")
return rate
def powerspectrum(rate, dt):
"""Compute the power spectrum of a given firing rate.
This function calculates the power spectrum using the Welch method.
Parameters
----------
rate : np.array
An array of firing rates.
dt : float
The temporal resolution (time step) in seconds.
Returns
-------
frequency : np.array
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
"""
frequency, power = sig.welch(rate, fs=1/dt, nperseg=2**15, noverlap=2**14)
return frequency, power
def prepare_harmonics(frequencies, categories, num_harmonics, colors):
points_categories = {}
for idx, (freq, category) in enumerate(zip(frequencies, categories)):
points_categories[category] = [freq * (i + 1) for i in range(num_harmonics[idx])]
points = [p for harmonics in points_categories.values() for p in harmonics]
color_mapping = {category: colors[idx] for idx, category in enumerate(categories)}
return points, color_mapping, points_categories
def plot_power_spectrum_with_integrals(frequency, power, points, delta):
"""
Create a figure of the power spectrum and calculate integrals around specified points.
This function generates the plot of the power spectrum and calculates integrals
around specified harmonic points, but it does not color the regions or add vertical lines.
Parameters
----------
frequency : np.array
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
points : list
A list of harmonic frequencies to highlight.
delta : float
Half-width of the range for integration around each point.
Returns
-------
integrals : list
List of calculated integrals for each point.
local_means : list
List of local mean values (adjacent integrals).
fig : matplotlib.figure.Figure
The created figure object with the power plot.
ax : matplotlib.axes.Axes
The axes object for further modifications.
"""
fig, ax = plt.subplots()
ax.plot(frequency, power) # Plot power spectrum
integrals = []
local_means = []
for point in points:
# Define indices for the integration window
indices = (frequency >= point - delta) & (frequency <= point + delta)
# Calculate integral around the point
integral = np.trapz(power[indices], frequency[indices])
integrals.append(integral)
# Calculate adjacent region integrals for local mean
left_indices = (frequency >= point - 5 * delta) & (frequency < point - delta)
right_indices = (frequency > point + delta) & (frequency <= point + 5 * delta)
l_integral = np.trapz(power[left_indices], frequency[left_indices])
r_integral = np.trapz(power[right_indices], frequency[right_indices])
local_mean = np.mean([l_integral, r_integral])
local_means.append(local_mean)
ax.set_xlim([0, 1200]) # Set x-axis limit
ax.set_xlabel('Frequency (Hz)')
ax.set_ylabel('Power')
ax.set_title('Power Spectrum with Integrals (Uncolored)')
return integrals, local_means, fig, ax
def highlight_integrals_with_threshold(frequency, power, points, delta, threshold, integrals, local_means, color_mapping, points_categories, fig_orig, ax_orig):
"""
Create a new figure by highlighting integrals that exceed the threshold.
This function generates a new figure with colored shading around points where the integrals exceed
the local mean by a given threshold and adds vertical lines at the boundaries of adjacent regions.
It leaves the original figure unchanged.
Parameters
----------
frequency : np.array
An array of frequencies corresponding to the power values.
power : np.array
An array of power spectral density values.
points : list
A list of harmonic frequencies to highlight.
delta : float
Half-width of the range for integration around each point.
threshold : float
Threshold value to compare integrals with local mean.
integrals : list
List of calculated integrals for each point.
local_means : list
List of local mean values (adjacent integrals).
color_mapping : dict
A mapping of point categories to colors.
points_categories : dict
A mapping of categories to lists of points.
fig_orig : matplotlib.figure.Figure
The original figure object (remains unchanged).
ax_orig : matplotlib.axes.Axes
The original axes object (remains unchanged).
Returns
-------
fig_new : matplotlib.figure.Figure
The new figure object with color highlights and vertical lines.
"""
# Create a new figure based on the original power spectrum
fig_new, ax_new = plt.subplots()
ax_new.plot(frequency, power) # Plot the same power spectrum
# Loop through each point and check if the integral exceeds the threshold
for i, point in enumerate(points):
exceeds = integrals[i] > (local_means[i] * threshold)
if exceeds:
# Define color based on the category of the point
color = next((c for cat, c in color_mapping.items() if point in points_categories[cat]), 'gray')
# Shade the region around the point where the integral was calculated
ax_new.axvspan(point - delta, point + delta, color=color, alpha=0.3, label=f'{point:.2f} Hz')
print(f"Integral around {point:.2f} Hz: {integrals[i]:.5e}")
# Define left and right boundaries of adjacent regions
left_boundary = frequency[np.where((frequency >= point - 5 * delta) & (frequency < point - delta))[0][0]]
right_boundary = frequency[np.where((frequency > point + delta) & (frequency <= point + 5 * delta))[0][-1]]
# Add vertical dashed lines at the boundaries of the adjacent regions
ax_new.axvline(x=left_boundary, color="k", linestyle="--")
ax_new.axvline(x=right_boundary, color="k", linestyle="--")
# Update plot legend and return the new figure
ax_new.set_xlim([0, 1200])
ax_new.set_xlabel('Frequency (Hz)')
ax_new.set_ylabel('Power')
ax_new.set_title('Power Spectrum with Highlighted Integrals')
ax_new.legend()
return fig_new
### Data retrieval ###
datafolder = "../data" # Geht in der Hierarchie einen Ordern nach oben (..) und dann in den Ordner 'data'
example_file = os.path.join("..", "data", "2024-10-16-ad-invivo-1.nix")
dataset = rlx.Dataset(example_file)
sams = dataset.repro_runs("SAM")
sam = sams[2]
## Daten für Funktionen
df = sam.metadata["RePro-Info"]["settings"]["deltaf"][0][0]
stim = sam.stimuli[1]
potential, time = stim.trace_data("V-1")
spikes, _ = stim.trace_data("Spikes-1")
duration = stim.duration
dt = stim.trace_info("V-1").sampling_interval
### Anwendung Functionen ###
b = binary_spikes(spikes, duration, dt)
rate = firing_rate(b, box_width=0.05, dt=dt)
frequency, power = powerspectrum(b, dt)
## Important stuff
eodf = stim.metadata[stim.name]["EODf"][0][0]
stimulus_frequency = eodf + df
AM = 50 # Hz
#print(f"EODf: {eodf}, Stimulus Frequency: {stimulus_frequency}, AM: {AM}")
frequencies = [AM, eodf, stimulus_frequency]
categories = ["AM", "EODf", "Stimulus frequency"]
num_harmonics = [4, 2, 2]
colors = ["green", "orange", "red"]
delta = 2.5
threshold = 10
###
points, color_mapping, points_categories = prepare_harmonics(frequencies, categories, num_harmonics, colors)
# First, create the power spectrum plot with integrals (without coloring)
integrals, local_means, fig1, ax1 = plot_power_spectrum_with_integrals(frequency, power, points, delta)
# Then, create a new separate figure where integrals exceeding the threshold are highlighted
fig2 = highlight_integrals_with_threshold(frequency, power, points, delta, threshold, integrals, local_means, color_mapping, points_categories, fig1, ax1)