39 lines
1.4 KiB
Python
39 lines
1.4 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from IPython import embed, embed_kernel
|
|
from tracking_result import TrackingResult
|
|
import image_marker as im
|
|
|
|
|
|
def show_tracking_results(dlc_results_file):
|
|
tr = TrackingResult(dlc_results_file)
|
|
tr.plot(bodypart="snout")
|
|
t, x, y, l = tr.position_values(framerate=30)
|
|
print("frame_count", len(t))
|
|
print("min x pos: %.2f, max x pos: %.2f" % (np.min(x), np.max(x)))
|
|
print("min y pos: %.2f, max y pos: %.2f" % (np.min(y), np,max(y)))
|
|
print("min likelihood: %.2f, max likelihood: %.2f" % (np.min(l), np,max(l)))
|
|
|
|
|
|
def show_image_marking(video_file):
|
|
tank_task = im.MarkerTask("tank limits", ["bottom left corner", "top left corner", "top right corner", "bottom right corner"], "Mark tank corners")
|
|
feeder_task = im.MarkerTask("Feeder positions", list(map(str, range(1, 9))), "Mark feeder positions", color="tab:red", marker="s")
|
|
tasks = [tank_task, feeder_task]
|
|
|
|
image_marker = im.ImageMarker(tasks)
|
|
marker_positions = image_marker.mark_movie(video_file, 1)
|
|
for t in marker_positions:
|
|
print(t)
|
|
|
|
|
|
def main(dlc_results_file, video_file):
|
|
show_tracking_results(dlc_results_file)
|
|
show_image_marking(video_file)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
filename = "2020.12.11_lepto48DLC_resnet50_boldnessDec11shuffle1_200000.h5"
|
|
video = "2020.12.11_lepto48DLC_resnet50_boldnessDec11shuffle1_200000_labeled.mp4"
|
|
|
|
main(filename, video)
|