tracking_tools/tracking_result.py
2021-01-21 08:33:02 +01:00

101 lines
3.3 KiB
Python

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import numbers as nb
import os
x_0 = 116
y_0 = 156
x_factor = 1.24/1648 # Einheit m/px
y_factor = 0.81/748 # Einheit m/px
def coordinate_transformation(position):
x = (position[0] - x_0) * x_factor
y = (position[1] - y_0) * y_factor
return (x, y) #in m
class TrackingResult():
def __init__(self, results_file) -> None:
super().__init__()
if not os.path.exists(results_file):
raise ValueError("File %s does not exist!" % results_file)
self._file_name = results_file
self._data_frame = pd.read_hdf(results_file)
self._level_shape = self._data_frame.columns.levshape
self._scorer = self._data_frame.columns.levels[0].values
self._bodyparts = self._data_frame.columns.levels[1].values if self._level_shape[1] > 0 else []
self._positions = self._data_frame.columns.levels[2].values if self._level_shape[2] > 0 else []
@property
def filename(self):
return self._file_name
@property
def dataframe(self):
return self._data_frame
@property
def scorer(self):
return self._scorer
@property
def bodyparts(self):
return self._bodyparts
@property
def positions(self):
return self._positions
def position_values(self, scorer=0, bodypart=0, framerate=30):
"""returns the x and y positions in m and the likelihood of the positions.
Args:
scorer (int, optional): [description]. Defaults to 0.
bodypart (int, optional): [description]. Defaults to 0.
framerate (int, optional): [description]. Defaults to 30.
Raises:
ValueError: [description]
ValueError: [description]
Returns:
[type]: [description]
"""
if isinstance(scorer, nb.Number):
sc = self._scorer[scorer]
elif isinstance(scorer, str) and scorer in self._scorer:
sc = scorer
else:
raise ValueError("Scorer %s is not in dataframe!" % scorer)
if isinstance(bodypart, nb.Number):
bp = self._bodyparts[bodypart]
elif isinstance(bodypart, str) and bodypart in self._bodyparts:
bp = bodypart
else:
raise ValueError("Bodypart %s is not in dataframe!" % bodypart)
x = self._data_frame[sc][bp]["x"] if "x" in self._positions else []
x = (np.asarray(x) - x_0) * x_factor
y = self._data_frame[sc][bp]["y"] if "y" in self._positions else []
y = (np.asarray(y) - y_0) * y_factor
l = self._data_frame[sc][bp]["likelihood"] if "likelihood" in self._positions else []
time = np.arange(len(self._data_frame))/framerate
return time, x, y, l, bp
def plot(self, scorer=0, bodypart=0, threshold=0.9, framerate=30):
t, x, y, l, name = self.position_values(scorer=scorer, bodypart=bodypart, framerate=framerate)
plt.scatter(x[l > threshold], y[l > threshold], c=t[l > threshold], label=name)
plt.plot(x[l > threshold], y[l > threshold])
plt.xlabel("x position")
plt.ylabel("y position")
plt.gca().invert_yaxis()
bar = plt.colorbar()
bar.set_label("time [s]")
plt.legend()
plt.show()