several steps later
This commit is contained in:
parent
464a3f5813
commit
768ae7f0b6
@ -1,6 +1,8 @@
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import cv2
|
import cv2
|
||||||
import os
|
import os
|
||||||
|
import sys
|
||||||
|
from IPython import embed
|
||||||
|
|
||||||
class ImageMarker:
|
class ImageMarker:
|
||||||
|
|
||||||
@ -29,7 +31,7 @@ class ImageMarker:
|
|||||||
success, frame = video.read()
|
success, frame = video.read()
|
||||||
frame_counter += 1
|
frame_counter += 1
|
||||||
if success:
|
if success:
|
||||||
self._fig.gca().imshow(frame)
|
self._fig.gca().imshow(frame, origin='lower')
|
||||||
else:
|
else:
|
||||||
print("Could not read frame number %i either failed to open movie or beyond maximum frame number!" % frame_number)
|
print("Could not read frame number %i either failed to open movie or beyond maximum frame number!" % frame_number)
|
||||||
return []
|
return []
|
||||||
@ -141,6 +143,9 @@ if __name__ == "__main__":
|
|||||||
feeder_task = MarkerTask("Feeder positions", list(map(str, range(1, 2))), "Mark feeder positions")
|
feeder_task = MarkerTask("Feeder positions", list(map(str, range(1, 2))), "Mark feeder positions")
|
||||||
tasks = [tank_task, feeder_task]
|
tasks = [tank_task, feeder_task]
|
||||||
im = ImageMarker(tasks)
|
im = ImageMarker(tasks)
|
||||||
vid1 = "2020.12.11_lepto48DLC_resnet50_boldnessDec11shuffle1_200000_labeled.mp4"
|
# vid1 = "2020.12.11_lepto48DLC_resnet50_boldnessDec11shuffle1_200000_labeled.mp4"
|
||||||
marker_positions = im.mark_movie(vid1, 10000)
|
print(sys.argv[0])
|
||||||
|
print (sys.argv[1])
|
||||||
|
vid1 = sys.argv[1]
|
||||||
|
marker_positions = im.mark_movie(vid1, 10)
|
||||||
print(marker_positions)
|
print(marker_positions)
|
112
setup_config.py
Normal file
112
setup_config.py
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import glob
|
||||||
|
import os
|
||||||
|
import image_marker as im
|
||||||
|
import numpy as np
|
||||||
|
import tracking_result as tr
|
||||||
|
from IPython import embed
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# wir estellen eine Tabelle, die fuer jeden Tag die Setup Configuration enthält.
|
||||||
|
# Folgende Spalten:
|
||||||
|
# Versuchstag, Datum, light_on_area, feeder_positions, feeder_risks, temperature, salinity
|
||||||
|
x_limits = np.array([0, 1.24])
|
||||||
|
y_limits = np.array([0, 0.81])
|
||||||
|
|
||||||
|
def get_risk(position, light_area_y, x_limits, y_limits, light_risk=1):
|
||||||
|
"""Calculates the risk associated with a certain position in the arena
|
||||||
|
|
||||||
|
Args:
|
||||||
|
position (iterable): two-element vector of position i.e. (x,y)
|
||||||
|
light_area_y (iterable): two element vactor with the start and stop y-coordinates of light area
|
||||||
|
light_risk (float, optional): if position is on the bright side, a malus is added. Defaults to 1.
|
||||||
|
x_limits : extent of the tank on x axis in cm
|
||||||
|
y_limits : extent of the tank on y axis in cm
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
float: the risk for this position
|
||||||
|
"""
|
||||||
|
min_wall_dist_x = min(np.abs(position[0] - x_limits))
|
||||||
|
min_wall_dist_y = min(np.abs(position[1] - y_limits))
|
||||||
|
|
||||||
|
risk_x = 1/(max(x_limits)/2) * min_wall_dist_x
|
||||||
|
risk_y = 1/(max(y_limits)/2) * min_wall_dist_y
|
||||||
|
total_risk = min(risk_x, risk_y)
|
||||||
|
|
||||||
|
is_position_on_the_bright_side = position[1] >= light_area_y[0] and position[1] < light_area_y[1]
|
||||||
|
if is_position_on_the_bright_side:
|
||||||
|
total_risk = total_risk + light_risk
|
||||||
|
return total_risk
|
||||||
|
|
||||||
|
|
||||||
|
def get_feeder_risks(feeder_positions, light_on_area):
|
||||||
|
feeder_risks = {}
|
||||||
|
if light_on_area['light_center'][1] < light_on_area['left'][1]:
|
||||||
|
light_area = [0, light_on_area['left'][1]]
|
||||||
|
else:
|
||||||
|
light_area = [light_on_area['left'][1], y_limits[1]]
|
||||||
|
for k in feeder_positions.keys():
|
||||||
|
feeder_risks[k] = get_risk(feeder_positions[k], light_area, x_limits, y_limits)
|
||||||
|
embed()
|
||||||
|
|
||||||
|
|
||||||
|
def get_feeder_positions(vid):
|
||||||
|
feeder_task = im.MarkerTask("Feeder positions", list(map(str, range(1, 9))), "Mark feeder positions")
|
||||||
|
tasks = [feeder_task]
|
||||||
|
image_marker = im.ImageMarker(tasks)
|
||||||
|
feeder_positions = image_marker.mark_movie(vid, 100)
|
||||||
|
for k in feeder_positions[0].keys():
|
||||||
|
pos = feeder_positions[0][k]
|
||||||
|
new_pos = tr.coordinate_transformation(pos)
|
||||||
|
feeder_positions[0][k] = new_pos
|
||||||
|
return feeder_positions[0]
|
||||||
|
|
||||||
|
|
||||||
|
def get_light_on_area(vid):
|
||||||
|
light_on_task = im.MarkerTask("Light ON", ["left", "right", "light_center"], "Mark light on area")
|
||||||
|
tasks = [light_on_task]
|
||||||
|
image_marker = im.ImageMarker(tasks)
|
||||||
|
marker_positions = image_marker.mark_movie(vid, 100)
|
||||||
|
for k in marker_positions[0].keys():
|
||||||
|
pos = marker_positions[0][k]
|
||||||
|
new_pos = tr.coordinate_transformation(pos)
|
||||||
|
marker_positions[0][k] = new_pos
|
||||||
|
print(marker_positions)
|
||||||
|
return marker_positions[0]
|
||||||
|
|
||||||
|
|
||||||
|
def check_day(path):
|
||||||
|
vids = sorted(glob.glob(os.path.join(path, '*.mp4')))
|
||||||
|
if len(vids) < 1:
|
||||||
|
return
|
||||||
|
vid = vids[0]
|
||||||
|
la = get_light_on_area(vid)
|
||||||
|
fp = get_feeder_positions(vid)
|
||||||
|
fr = get_feeder_risks(fp, la)
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
folder = '/mnt/movies/merle_verena/boldness/labeled_videos'
|
||||||
|
days = sorted(glob.glob(os.path.join(folder, 'day*')))
|
||||||
|
x_range = np.arange(0.0, 1.24, .01)
|
||||||
|
y_range = np.arange(0.0, .82, .01)
|
||||||
|
risk_matrix = np.zeros((len(x_range), len(y_range)))
|
||||||
|
|
||||||
|
"""
|
||||||
|
light_on = [0.5687952439426905, 0.82]
|
||||||
|
#light_on = [0, 0.5687952439426905]
|
||||||
|
# light_on = [45.5, 81]
|
||||||
|
|
||||||
|
for i, x in enumerate(x_range):
|
||||||
|
for j, y in enumerate(y_range):
|
||||||
|
risk_matrix[i, j] = get_risk([x, y], light_on, x_limits=x_limits, y_limits=y_limits )
|
||||||
|
plt.imshow(risk_matrix.T, origin='lower')
|
||||||
|
plt.show()
|
||||||
|
exit()
|
||||||
|
"""
|
||||||
|
for d in days:
|
||||||
|
check_day(d)
|
||||||
|
print(d)
|
||||||
|
exit()
|
9
test.py
9
test.py
@ -23,10 +23,11 @@ def show_tracking_results(dlc_results_file):
|
|||||||
def show_image_marking(video_file):
|
def show_image_marking(video_file):
|
||||||
tank_task = im.MarkerTask("tank limits", ["bottom left corner", "top left corner", "top right corner", "bottom right corner"], "Mark tank corners")
|
tank_task = im.MarkerTask("tank limits", ["bottom left corner", "top left corner", "top right corner", "bottom right corner"], "Mark tank corners")
|
||||||
feeder_task = im.MarkerTask("Feeder positions", list(map(str, range(1, 9))), "Mark feeder positions", color="tab:red", marker="s")
|
feeder_task = im.MarkerTask("Feeder positions", list(map(str, range(1, 9))), "Mark feeder positions", color="tab:red", marker="s")
|
||||||
tasks = [tank_task, feeder_task]
|
dark_light_task = im.MarkerTask('Dark side', ['left', 'right', 'dark_center'], 'Mark light dark separator line')
|
||||||
|
tasks = [tank_task, feeder_task, dark_light_task]
|
||||||
|
|
||||||
image_marker = im.ImageMarker(tasks)
|
image_marker = im.ImageMarker(tasks)
|
||||||
marker_positions = image_marker.mark_movie(video_file, 1)
|
marker_positions = image_marker.mark_movie(video_file, 100)
|
||||||
for t in marker_positions:
|
for t in marker_positions:
|
||||||
print(t)
|
print(t)
|
||||||
|
|
||||||
@ -37,7 +38,7 @@ def main(dlc_results_file, video_file):
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
filename = "2020.12.11_lepto48DLC_resnet50_boldnessDec11shuffle1_200000.h5"
|
filename = "../boldness/videos/day_8/2020.12.11_lepto48DLC_resnet50_boldnessDec11shuffle1_200000.h5"
|
||||||
video = "2020.12.11_lepto48DLC_resnet50_boldnessDec11shuffle1_200000_labeled.mp4"
|
video = "../boldness/videos/day_8/2020.12.11_lepto48DLC_resnet50_boldnessDec11shuffle1_200000_labeled.mp4"
|
||||||
|
|
||||||
main(filename, video)
|
main(filename, video)
|
||||||
|
@ -4,6 +4,18 @@ import numpy as np
|
|||||||
import numbers as nb
|
import numbers as nb
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
x_0 = 116
|
||||||
|
y_0 = 156
|
||||||
|
x_factor = 1.24/1648 # Einheit m/px
|
||||||
|
y_factor = 0.81/748 # Einheit m/px
|
||||||
|
|
||||||
|
|
||||||
|
def coordinate_transformation(position):
|
||||||
|
x = (position[0] - x_0) * x_factor
|
||||||
|
y = (position[1] - y_0) * y_factor
|
||||||
|
return (x, y) #in m
|
||||||
|
|
||||||
|
|
||||||
class TrackingResult():
|
class TrackingResult():
|
||||||
|
|
||||||
def __init__(self, results_file) -> None:
|
def __init__(self, results_file) -> None:
|
||||||
@ -40,6 +52,21 @@ class TrackingResult():
|
|||||||
return self._positions
|
return self._positions
|
||||||
|
|
||||||
def position_values(self, scorer=0, bodypart=0, framerate=30):
|
def position_values(self, scorer=0, bodypart=0, framerate=30):
|
||||||
|
"""returns the x and y positions in m and the likelihood of the positions.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
scorer (int, optional): [description]. Defaults to 0.
|
||||||
|
bodypart (int, optional): [description]. Defaults to 0.
|
||||||
|
framerate (int, optional): [description]. Defaults to 30.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: [description]
|
||||||
|
ValueError: [description]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
[type]: [description]
|
||||||
|
"""
|
||||||
|
|
||||||
if isinstance(scorer, nb.Number):
|
if isinstance(scorer, nb.Number):
|
||||||
sc = self._scorer[scorer]
|
sc = self._scorer[scorer]
|
||||||
elif isinstance(scorer, str) and scorer in self._scorer:
|
elif isinstance(scorer, str) and scorer in self._scorer:
|
||||||
@ -54,7 +81,9 @@ class TrackingResult():
|
|||||||
raise ValueError("Bodypart %s is not in dataframe!" % bodypart)
|
raise ValueError("Bodypart %s is not in dataframe!" % bodypart)
|
||||||
|
|
||||||
x = self._data_frame[sc][bp]["x"] if "x" in self._positions else []
|
x = self._data_frame[sc][bp]["x"] if "x" in self._positions else []
|
||||||
|
x = (np.asarray(x) - x_0) * x_factor
|
||||||
y = self._data_frame[sc][bp]["y"] if "y" in self._positions else []
|
y = self._data_frame[sc][bp]["y"] if "y" in self._positions else []
|
||||||
|
y = (np.asarray(y) - y_0) * y_factor
|
||||||
l = self._data_frame[sc][bp]["likelihood"] if "likelihood" in self._positions else []
|
l = self._data_frame[sc][bp]["likelihood"] if "likelihood" in self._positions else []
|
||||||
time = np.arange(len(self._data_frame))/framerate
|
time = np.arange(len(self._data_frame))/framerate
|
||||||
return time, x, y, l, bp
|
return time, x, y, l, bp
|
||||||
|
Loading…
Reference in New Issue
Block a user