gp_neurobio/code/spikes_beat.py
2018-11-29 17:06:17 +01:00

63 lines
2.2 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
from read_chirp_data import *
from read_baseline_data import *
from utility import *
from IPython import embed
# define data path and important parameters
data_dir = "../data"
sampling_rate = 40 #kHz
cut_window = 100
cut_range = np.arange(-cut_window * sampling_rate, 0, 1)
window = 1
#dataset = "2018-11-13-ad-invivo-1"
#dataset = "2018-11-13-aj-invivo-1"
#dataset = "2018-11-13-ak-invivo-1" #al
#dataset = "2018-11-14-ad-invivo-1"
dataset = "2018-11-20-af-invivo-1"
base_spikes = read_baseline_spikes(os.path.join(data_dir, dataset))
base_spikes = base_spikes[1000:2000]
spikerate = len(base_spikes) / base_spikes[-1]
print(spikerate)
# read spikes during chirp stimulation
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
df_map = map_keys(spikes)
rates = {}
# iterate over df
for deltaf in df_map.keys():
rates[deltaf] = {}
beat_duration = int(abs(1 / deltaf) * 1000)
beat_window = 0
while beat_window + beat_duration <= cut_window/2:
beat_window = beat_window + beat_duration
for x, repetition in enumerate(df_map[deltaf]):
for phase in spikes[repetition]:
# get spikes some ms before the chirp first chirp
spikes_to_cut = np.asarray(spikes[repetition][phase])
spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < 0)]
spikes_idx = np.round(spikes_cut * sampling_rate)
# also save as binary, 0 no spike, 1 spike
binary_spikes = np.isin(cut_range, spikes_idx) * 1
smoothed_data = smooth(binary_spikes, window, 1 / sampling_rate)
#train = smoothed_data[window*sampling_rate:beat_window*sampling_rate+window*sampling_rate]
modulation = np.std(smoothed_data)
rates[deltaf][x] = modulation
break
fig, ax = plt.subplots()
for i, df in enumerate(sorted(rates.keys())):
for j, rep in enumerate(rates[df].keys()):
if j == 15:
farbe = 'royalblue'
gro = 18
else:
farbe = 'k'
gro = 12
ax.plot(df, rates[df][rep], marker='o', color=farbe, ms=gro)
fig.tight_layout()
plt.show()