import matplotlib.pyplot as plt import numpy as np from read_chirp_data import * from read_baseline_data import * from utility import * from IPython import embed # define data path and important parameters data_dir = "../data" sampling_rate = 40 #kHz cut_window = 100 cut_range = np.arange(-cut_window * sampling_rate, 0, 1) window = 1 #dataset = "2018-11-13-ad-invivo-1" #dataset = "2018-11-13-aj-invivo-1" #dataset = "2018-11-13-ak-invivo-1" #al #dataset = "2018-11-14-ad-invivo-1" dataset = "2018-11-20-af-invivo-1" base_spikes = read_baseline_spikes(os.path.join(data_dir, dataset)) base_spikes = base_spikes[1000:2000] spikerate = len(base_spikes) / base_spikes[-1] print(spikerate) # read spikes during chirp stimulation spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(spikes) rates = {} # iterate over df for deltaf in df_map.keys(): rates[deltaf] = {} beat_duration = int(abs(1 / deltaf) * 1000) beat_window = 0 while beat_window + beat_duration <= cut_window/2: beat_window = beat_window + beat_duration for x, repetition in enumerate(df_map[deltaf]): for phase in spikes[repetition]: # get spikes some ms before the chirp first chirp spikes_to_cut = np.asarray(spikes[repetition][phase]) spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < 0)] spikes_idx = np.round(spikes_cut * sampling_rate) # also save as binary, 0 no spike, 1 spike binary_spikes = np.isin(cut_range, spikes_idx) * 1 smoothed_data = smooth(binary_spikes, window, 1 / sampling_rate) #train = smoothed_data[window*sampling_rate:beat_window*sampling_rate+window*sampling_rate] modulation = np.std(smoothed_data) rates[deltaf][x] = modulation break fig, ax = plt.subplots() for i, df in enumerate(sorted(rates.keys())): for j, rep in enumerate(rates[df].keys()): if j == 15: farbe = 'royalblue' gro = 18 else: farbe = 'k' gro = 12 ax.plot(df, rates[df][rep], marker='o', color=farbe, ms=gro) fig.tight_layout() plt.show()