84 lines
2.8 KiB
Python
84 lines
2.8 KiB
Python
from read_chirp_data import *
|
|
from utility import *
|
|
#import nix_helpers as nh
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from IPython import embed
|
|
|
|
|
|
|
|
data_dir = "../data"
|
|
dataset = "2018-11-09-ad-invivo-1"
|
|
data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1")
|
|
|
|
|
|
|
|
#for dataset in data:
|
|
eod = read_chirp_eod(os.path.join(data_dir, dataset))
|
|
times = read_chirp_times(os.path.join(data_dir, dataset))
|
|
df_map = map_keys(eod)
|
|
|
|
|
|
|
|
#die äußere Schleife geht für alle Keys durch und somit durch alle dfs
|
|
#die innnere Schleife bildet die 16 Wiederholungen einer Frequenz ab
|
|
for i in df_map.keys():
|
|
freq = list(df_map[i])
|
|
fig,axs = plt.subplots(2, 2, sharex = True, sharey = True)
|
|
|
|
for idx, k in enumerate(freq):
|
|
ct = times[k]
|
|
e1 = eod[k]
|
|
zeit = e1[0]
|
|
eods = e1[1]
|
|
|
|
if idx <= 3:
|
|
axs[0, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
|
axs[0, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
|
|
elif 4<= idx <= 7:
|
|
axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
|
axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
|
|
elif 8<= idx <= 11:
|
|
axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
|
axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
|
|
else:
|
|
axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
|
axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
|
|
|
|
|
|
fig.suptitle('EOD for chirps', fontsize = 16)
|
|
axs[0,0].set_ylabel('Amplitude [mV]')
|
|
axs[0,1].set_xlabel('Amplitude [mV]')
|
|
axs[1,0].set_xlabel('Time [ms]')
|
|
axs[1,1].set_xlabel('Time [ms]')
|
|
|
|
|
|
|
|
#for i in df_map.keys():
|
|
|
|
freq = list(df_map['-50Hz'])
|
|
ls_mod = []
|
|
beat_mods = []
|
|
for k in freq:
|
|
e1 = eod[k]
|
|
zeit = np.asarray(e1[0])
|
|
ampl = np.asarray(e1[1])
|
|
|
|
ct = times[k]
|
|
for chirp in ct:
|
|
time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)]
|
|
eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)]
|
|
beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)]
|
|
|
|
chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp
|
|
beat_mod = np.std(beat_cut) #Std vom Bereich vor dem Chirp
|
|
ls_mod.append(chirp_mod)
|
|
beat_mods.append(beat_mod)
|
|
|
|
#Länge des Mods ist 160, 16 Wiederholungen mal 10 Chirps pro Trial
|
|
#Verwendung der Std für die Amplitudenmodulation?
|
|
|
|
|
|
|
|
#Chirps einer Phase zuordnen - zusammen plotten?
|