oops
This commit is contained in:
parent
a151ebd886
commit
470240df1d
@ -1,5 +1,6 @@
|
||||
from read_chirp_data import *
|
||||
import nix_helpers as nh
|
||||
from utility import *
|
||||
#import nix_helpers as nh
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
@ -15,24 +16,12 @@ data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-inviv
|
||||
#for dataset in data:
|
||||
eod = read_chirp_eod(os.path.join(data_dir, dataset))
|
||||
times = read_chirp_times(os.path.join(data_dir, dataset))
|
||||
|
||||
|
||||
|
||||
df_map = {} #Keys werden nach df sortiert ausgegeben
|
||||
for k in eod.keys():
|
||||
df = k[1]
|
||||
ch = k[3]
|
||||
if df in df_map.keys():
|
||||
df_map[df].append(k)
|
||||
else:
|
||||
df_map[df] = [k]
|
||||
|
||||
#print(ch) #die Chirphöhe wird ausgegeben, um zu bestimmen, ob Chirps oder Chirps large benutzt wurde
|
||||
df_map = map_keys(eod)
|
||||
|
||||
|
||||
|
||||
#die äußere Schleife geht für alle Keys durch und somit durch alle dfs
|
||||
#die innnere Schleife bildet die 16 Wiederholungen einer Frequenz in 4 Subplots ab
|
||||
#die innnere Schleife bildet die 16 Wiederholungen einer Frequenz ab
|
||||
for i in df_map.keys():
|
||||
freq = list(df_map[i])
|
||||
fig,axs = plt.subplots(2, 2, sharex = True, sharey = True)
|
||||
@ -62,40 +51,33 @@ axs[0,0].set_ylabel('Amplitude [mV]')
|
||||
axs[0,1].set_xlabel('Amplitude [mV]')
|
||||
axs[1,0].set_xlabel('Time [ms]')
|
||||
axs[1,1].set_xlabel('Time [ms]')
|
||||
#axs kann nur einzelne Label erzeugen, nicht generell möglich wie beim Titel
|
||||
|
||||
|
||||
|
||||
for i in df_map.keys():
|
||||
freq = list(df_map[i])
|
||||
|
||||
ct = times[freq[1]]
|
||||
ct1 = ct[1]
|
||||
#for i in df_map.keys():
|
||||
|
||||
freq = list(df_map['-50Hz'])
|
||||
ls_mod = []
|
||||
beat_mods = []
|
||||
for k in freq:
|
||||
e1 = eod[k]
|
||||
zeit = np.asarray(e1[0])
|
||||
ampl = np.asarray(e1[1])
|
||||
|
||||
time_cut = zeit[(zeit > ct1-25) & (zeit < ct1+25)]
|
||||
eod_cut = ampl[(zeit > ct1-25) & (zeit < ct1+25)]
|
||||
|
||||
change = ampl[int(ct1)]
|
||||
|
||||
plt.figure(12)
|
||||
plt.plot(time_cut, eod_cut)
|
||||
plt.scatter(ct1, 3, color = 'green', s= 30)
|
||||
plt.title('Chirp reaction Ampl.')
|
||||
plt.xlabel('Time [ms]')
|
||||
plt.ylabel('Amplitude[mV]')
|
||||
#plt.show()
|
||||
|
||||
|
||||
#4. Chirps einer Phase zuordnen - zusammen plotten?
|
||||
|
||||
ct = times[k]
|
||||
for chirp in ct:
|
||||
time_cut = zeit[(zeit > chirp-10) & (zeit < chirp+10)]
|
||||
eods_cut = ampl[(zeit > chirp-10) & (zeit < chirp+10)]
|
||||
beat_cut = ampl[(zeit > chirp-55) & (zeit < chirp-10)]
|
||||
|
||||
chirp_mod = np.std(eods_cut) #Std vom Bereich um den Chirp
|
||||
beat_mod = np.std(beat_cut) #Std vom Bereich vor dem Chirp
|
||||
ls_mod.append(chirp_mod)
|
||||
beat_mods.append(beat_mod)
|
||||
|
||||
#next Step: EOD-Amplitudenmodulation für beat aber OHNE Chirps plotten
|
||||
#allerdings: in der Aufnahme sind nur kurze Zeitfenster ohne Chirps zu finden!
|
||||
#Länge des Mods ist 160, 16 Wiederholungen mal 10 Chirps pro Trial
|
||||
#Verwendung der Std für die Amplitudenmodulation?
|
||||
|
||||
|
||||
|
||||
#Chirps einer Phase zuordnen - zusammen plotten?
|
||||
|
@ -1,6 +1,7 @@
|
||||
from read_baseline_data import *
|
||||
from read_chirp_data import *
|
||||
import nix_helpers as nh
|
||||
from utility import *
|
||||
#import nix_helpers as nh
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from IPython import embed #Funktionen importieren
|
||||
@ -38,26 +39,18 @@ plt.show()
|
||||
#Nyquist-Theorem Plot:
|
||||
|
||||
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
|
||||
|
||||
|
||||
df_map = {}
|
||||
#Keys werden nach df sortiert ausgegeben
|
||||
for k in chirp_spikes.keys():
|
||||
df = k[1]
|
||||
ch = k[3]
|
||||
if df in df_map.keys():
|
||||
df_map[df].append(k)
|
||||
else:
|
||||
df_map[df] = [k]
|
||||
df_map = map_keys(chirp_spikes)
|
||||
|
||||
|
||||
for i in df_map.keys():
|
||||
freq = list(df_map[i])
|
||||
for k in freq:
|
||||
|
||||
spikes = chirp_spikes[k]
|
||||
trial = spikes[1]
|
||||
print(trial)
|
||||
phase_map = map_keys(spikes)
|
||||
for p in phase_map:
|
||||
spike_rate = 1./ np.diff(p)
|
||||
|
||||
print(spike_rate)
|
||||
#
|
||||
# plt.plot(spikes, rate)
|
||||
# plt.show()
|
||||
|
@ -27,10 +27,10 @@ def map_keys(input):
|
||||
df_map = {}
|
||||
for k in input.keys():
|
||||
df = k[1]
|
||||
ch = k[3]
|
||||
#ch = k[3]
|
||||
if df in df_map.keys():
|
||||
df_map[df].append(k)
|
||||
else:
|
||||
df_map[df] = [k]
|
||||
return df_map
|
||||
print(ch)
|
||||
#print(ch)
|
||||
|
Loading…
Reference in New Issue
Block a user