94 lines
2.6 KiB
Python
94 lines
2.6 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from read_baseline_data import *
|
|
from IPython import embed
|
|
from NixFrame import *
|
|
|
|
inch_factor = 2.54
|
|
data_dir = '../data'
|
|
dataset = '2018-11-09-ad-invivo-1'
|
|
time, eod = read_baseline_eod(os.path.join(data_dir, dataset))
|
|
|
|
#fig = plt.figure(figsize=(12/inch_factor, 8/inch_factor))
|
|
#ax = fig.add_subplot(111)
|
|
#ax.plot(time[:1000], eod[:1000])
|
|
#ax.set_xlabel('time [ms]', fontsize=12)
|
|
#ax.set_ylabel('voltage [mV]', fontsize=12)
|
|
#plt.xticks(fontsize = 8)
|
|
#plt.yticks(fontsize = 8)
|
|
#fig.tight_layout()
|
|
#plt.savefig('eod.pdf')
|
|
|
|
#interspikeintervalhistogram, windowsize = 1 ms
|
|
#plt.hist
|
|
#coefficient of variation
|
|
#embed()
|
|
#exit()
|
|
|
|
spikes = read_baseline_spikes(os.path.join(data_dir, dataset))
|
|
interspikeintervals = np.diff(spikes)
|
|
#fig = plt.figure()
|
|
#plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.0001))
|
|
#plt.show()
|
|
|
|
mu = np.mean(interspikeintervals)
|
|
sigma = np.std(interspikeintervals)
|
|
cv = sigma/mu
|
|
#print(cv)
|
|
|
|
# calculate zero crossings of the eod
|
|
# plot mean of eod circles
|
|
# plot std of eod circles
|
|
# plot psth into the same plot
|
|
# calculate vector strength
|
|
|
|
threshold = 0
|
|
shift_eod = np.roll(eod, 1)
|
|
eod_times = time[(eod >= threshold) & (shift_eod < threshold)]
|
|
sampling_rate = 40000.0
|
|
eod_idx = eod_times*sampling_rate
|
|
|
|
|
|
max_cut = int(np.max(np.diff(eod_idx)))
|
|
eod_cuts = np.zeros([len(eod_idx)-1, max_cut])
|
|
# eods 15 + 16 are to short
|
|
relative_times = []
|
|
|
|
for i, idx in enumerate(eod_idx[:-1]):
|
|
eod_cut = eod[int(idx):int(eod_idx[i+1])]
|
|
eod_cuts[i, :len(eod_cut)] = eod_cut
|
|
eod_cuts[i, len(eod_cut):] = np.nan
|
|
time_cut = time[int(idx):int(eod_idx[i+1])]
|
|
spike_cut = spikes[(spikes > time_cut[0]) & (spikes < time_cut[-1])]
|
|
relative_time = spike_cut - time_cut[0]
|
|
if len(relative_time) > 0:
|
|
relative_times.append(relative_time[:][0]*1000)
|
|
|
|
|
|
mu_eod = np.nanmean(eod_cuts, axis=0)
|
|
std_eod = np.nanstd(eod_cuts, axis=0)*3
|
|
|
|
time_axis = np.arange(max_cut)/sampling_rate*1000
|
|
|
|
#fig = plt.figure(figsize=(12/inch_factor, 8/inch_factor))
|
|
fig, ax1 = plt.subplots(figsize=(12/inch_factor, 8/inch_factor))
|
|
ax1.hist(relative_times, color='crimson')
|
|
ax1.set_xlabel('time [ms]', fontsize=12)
|
|
ax1.set_ylabel('number', fontsize=12)
|
|
ax1.tick_params(axis='y', labelcolor='crimson')
|
|
plt.yticks(fontsize = 8)
|
|
ax1.spines['top'].set_visible(False)
|
|
|
|
ax2 = ax1.twinx()
|
|
|
|
ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='dodgerblue', alpha=0.5)
|
|
ax2.plot(time_axis, mu_eod, color='black', lw=2)
|
|
ax2.set_ylabel('voltage [mV]', fontsize=12)
|
|
ax2.tick_params(axis='y', labelcolor='dodgerblue')
|
|
|
|
plt.xticks(fontsize = 8)
|
|
plt.yticks(fontsize = 8)
|
|
fig.tight_layout()
|
|
plt.show()
|
|
|