import numpy as np import matplotlib.pyplot as plt from read_baseline_data import * from IPython import embed from NixFrame import * inch_factor = 2.54 data_dir = '../data' dataset = '2018-11-09-ad-invivo-1' time, eod = read_baseline_eod(os.path.join(data_dir, dataset)) #fig = plt.figure(figsize=(12/inch_factor, 8/inch_factor)) #ax = fig.add_subplot(111) #ax.plot(time[:1000], eod[:1000]) #ax.set_xlabel('time [ms]', fontsize=12) #ax.set_ylabel('voltage [mV]', fontsize=12) #plt.xticks(fontsize = 8) #plt.yticks(fontsize = 8) #fig.tight_layout() #plt.savefig('eod.pdf') #interspikeintervalhistogram, windowsize = 1 ms #plt.hist #coefficient of variation #embed() #exit() spikes = read_baseline_spikes(os.path.join(data_dir, dataset)) interspikeintervals = np.diff(spikes) #fig = plt.figure() #plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.0001)) #plt.show() mu = np.mean(interspikeintervals) sigma = np.std(interspikeintervals) cv = sigma/mu #print(cv) # calculate zero crossings of the eod # plot mean of eod circles # plot std of eod circles # plot psth into the same plot # calculate vector strength threshold = 0 shift_eod = np.roll(eod, 1) eod_times = time[(eod >= threshold) & (shift_eod < threshold)] sampling_rate = 40000.0 eod_idx = eod_times*sampling_rate max_cut = int(np.max(np.diff(eod_idx))) eod_cuts = np.zeros([len(eod_idx)-1, max_cut]) # eods 15 + 16 are to short relative_times = [] for i, idx in enumerate(eod_idx[:-1]): eod_cut = eod[int(idx):int(eod_idx[i+1])] eod_cuts[i, :len(eod_cut)] = eod_cut eod_cuts[i, len(eod_cut):] = np.nan time_cut = time[int(idx):int(eod_idx[i+1])] spike_cut = spikes[(spikes > time_cut[0]) & (spikes < time_cut[-1])] relative_time = spike_cut - time_cut[0] if len(relative_time) > 0: relative_times.append(relative_time[:][0]*1000) mu_eod = np.nanmean(eod_cuts, axis=0) std_eod = np.nanstd(eod_cuts, axis=0)*3 time_axis = np.arange(max_cut)/sampling_rate*1000 #fig = plt.figure(figsize=(12/inch_factor, 8/inch_factor)) fig, ax1 = plt.subplots(figsize=(12/inch_factor, 8/inch_factor)) ax1.hist(relative_times, color='crimson') ax1.set_xlabel('time [ms]', fontsize=12) ax1.set_ylabel('number', fontsize=12) ax1.tick_params(axis='y', labelcolor='crimson') plt.yticks(fontsize = 8) ax1.spines['top'].set_visible(False) ax2 = ax1.twinx() ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='dodgerblue', alpha=0.5) ax2.plot(time_axis, mu_eod, color='black', lw=2) ax2.set_ylabel('voltage [mV]', fontsize=12) ax2.tick_params(axis='y', labelcolor='dodgerblue') plt.xticks(fontsize = 8) plt.yticks(fontsize = 8) fig.tight_layout() plt.show()