gp_neurobio/code/utility.py
2018-11-22 15:11:31 +01:00

46 lines
1.0 KiB
Python

import numpy as np
from IPython import embed
def zero_crossing(eod, time):
threshold = 0
shift_eod = np.roll(eod, 1)
eod_times = time[(eod >= threshold) & (shift_eod < threshold)]
sampling_rate = 40000.0
eod_idx = eod_times*sampling_rate
return eod_idx
def vector_strength(spike_times, eod_durations):
n = len(spike_times)
phase_times = np.zeros(len(spike_times))
for i, idx in enumerate(spike_times):
phase_times[i] = (spike_times[i] / eod_durations[i]) * 2 * np.pi
vs = np.sqrt((1/n*sum(np.cos(phase_times)))**2 + (1/n*sum(np.sin(phase_times)))**2)
return vs
def gaussian(x, sig):
y = np.exp(-0.5 * (x/sig)**2) / np.sqrt(2*np.pi)/sig
return y
def smooth(data, window, dt):
sigma = window
time_gauss = np.arange(-4 * sigma, 4 * sigma, dt)
gauss = gaussian(time_gauss, sigma)
smoothed_data = np.convolve(data, gauss, 'same')
return smoothed_data
def map_keys(input):
df_map = {}
for k in input.keys():
freq = k[1]
df = int(freq.strip('Hz'))
if df in df_map.keys():
df_map[df].append(k)
else:
df_map[df] = [k]
return df_map