beat
This commit is contained in:
parent
350dc24ad5
commit
99274191f8
@ -1,30 +1,72 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import scipy.stats as ss
|
||||
from read_chirp_data import *
|
||||
from utility import *
|
||||
from IPython import embed
|
||||
|
||||
# define sampling rate and data path
|
||||
sampling_rate = 40 #kHz
|
||||
# define data path and important parameters
|
||||
data_dir = "../data"
|
||||
cut_window = 20
|
||||
sampling_rate = 40 #kHz
|
||||
cut_window = 40
|
||||
cut_range = np.arange(-cut_window * sampling_rate, 0, 1)
|
||||
window = 1
|
||||
|
||||
data = ["2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1",
|
||||
'''
|
||||
# norm: -150, 150, 300
|
||||
data = ["2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1","2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1",
|
||||
"2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1"]
|
||||
|
||||
# norm: -50
|
||||
data = ["2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1","2018-11-20-ad-invivo-1",
|
||||
"2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1",
|
||||
"2018-11-20-ai-invivo-1"]
|
||||
|
||||
'''
|
||||
data = ["2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1",
|
||||
"2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1",
|
||||
"2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1"]
|
||||
|
||||
rates = {}
|
||||
|
||||
for dataset in data:
|
||||
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
|
||||
df_map = map_keys(spikes)
|
||||
print(dataset)
|
||||
for df in df_map.keys():
|
||||
beat_duration = 1/df
|
||||
'''
|
||||
if df == 50:
|
||||
pass
|
||||
else:
|
||||
continue
|
||||
'''
|
||||
|
||||
print(df)
|
||||
rep_rates = []
|
||||
beat_duration = int(abs(1 / df) * 1000)
|
||||
beat_window = 0
|
||||
while beat_window + beat_duration <= cut_window:
|
||||
while beat_window + beat_duration <= cut_window/2:
|
||||
beat_window = beat_window + beat_duration
|
||||
for rep in df_map[df]:
|
||||
for phase in spikes[rep]:
|
||||
response = spikes[rep][phase]
|
||||
# get spikes 40 ms before the chirp first chirp
|
||||
spikes_to_cut = np.asarray(spikes[rep][phase])
|
||||
spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < 0)]
|
||||
spikes_idx = np.round(spikes_cut * sampling_rate)
|
||||
# also save as binary, 0 no spike, 1 spike
|
||||
binary_spikes = np.isin(cut_range, spikes_idx) * 1
|
||||
smoothed_data = smooth(binary_spikes, window, 1 / sampling_rate)
|
||||
train = smoothed_data[window:beat_window+window]
|
||||
rep_rates.append(np.std(train))
|
||||
break
|
||||
#cut = response[response[]]
|
||||
df_rate = np.mean(rep_rates)
|
||||
if df in rates.keys():
|
||||
rates[df].append(df_rate)
|
||||
else:
|
||||
rates[df] = [df_rate]
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
for i, k in enumerate(sorted(rates.keys())):
|
||||
ax.plot(np.ones(len(rates[k]))*k, rates[k], 'o')
|
||||
#ax.legend(sorted(rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
|
@ -71,7 +71,7 @@ for dataset in data:
|
||||
# check the phase
|
||||
if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]:
|
||||
|
||||
# get spikes between 50 ms before and after the chirp
|
||||
# get spikes between 40 ms before and after the chirp
|
||||
spikes_to_cut = np.asarray(spikes[rep][phase])
|
||||
spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window*2) & (spikes_to_cut < cut_window*2)]
|
||||
spikes_idx = np.round(spikes_cut*sampling_rate)
|
||||
|
Loading…
Reference in New Issue
Block a user